Residual a Posteriori Error Estimates for the Mixed Finite Element Method

被引:0
作者
Robert Kirby
机构
[1] The University of Chicago,Departments of Computer Science and Mathematics
来源
Computational Geosciences | 2003年 / 7卷
关键词
a posteriori error estimates; mixed finite element method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, residual-based a posteriori error bounds are derived for the mixed finite element method applied to a model second order elliptic problem. A global upper bound for the error in the scalar variable is established, as well as a local lower bound. In addition, due to the fact that the scalar and vector variables are approximated to equal order accuracy, the dual problem may be modified to give an upper bound for the vector variable. Some comments on estimating more general error quantities are also made. The estimate effectively guides adaptive refinement for a smooth problem with a boundary layer, as well as detects the need to refine near a singularity.
引用
收藏
页码:197 / 214
页数:17
相关论文
共 35 条
[1]  
Ainsworth M.(1997)A posteriori error estimation in finite element analysis Comput. Methods Appl. Mech. Engrg. 142 1-88
[2]  
Oden J.T.(1985)Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates Modél. Math. Anal. Numér. 19 7-32
[3]  
Arnold D.(1978)Error estimates for adaptive finite element computations SIAM J. Numer. Anal. 15 736-754
[4]  
Brezzi F.(1981)A posteriori error estimates of finite element solutions for onedimensional problems SIAM J. Numer. Anal. 18 565-589
[5]  
Babuska I.(1985)Some a posteriori error estimates for elliptic partial differential equations Math. Comp. 44 283-301
[6]  
Rheinboldt W.C.(1996)A feed-back approach to error control in finite element methods: Basic analysis and examples East-West J. Numer. Math. 4 237-264
[7]  
Babuska I.(1996)A posteriori error estimators for the Raviart-Thomas element SIAM J. Numer. Anal. 33 2431-2444
[8]  
Rheinboldt W.C.(1985)Two families of mixed finite elements for second order elliptic problems Numer. Math. 47 217-235
[9]  
Bank R.(1997)A posteriori error estimate for themixed finite element method Math. Comp. 66 465-476
[10]  
Weiser A.(1983)The approximation of the pressure by a mixed method in the simulation of miscible displacement RAIRO Anal. Numér. 17 17-33