Numerical Simulation of Flow Over Two Side-By-Side Circular Cylinders

被引:0
|
作者
Hesam Sarvghad-Moghaddam
Navid Nooredin
Behzad Ghadiri-Dehkordi
机构
[1] Islamic Azad University,Department of Mechanical Engineering, Neyshabur Branch
[2] Tarbiat Modares University,Department of Mechanical Engineering, School of Engineering
来源
Journal of Hydrodynamics | 2011年 / 23卷
关键词
side-by-side cylinders; vortex shedding; flow induced forces; finite volume method; turbulent flow;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, the unsteady, viscous, incompressible and 2-D flow around two side-by-side circular cylinders was simulated using a Cartesian-staggered grid finite volume based method. A great-source term technique was employed to identify the solid bodies (cylinders) located in the flow field and boundary conditions were enforced by applying the ghost-cell technique. Finally, the characteristics of the flow around two side-by-side cylinders were comprehensively obtained through several computational simulations. The computational simulations were performed for different transverse gap ratios (1.5 =≤T /D =≤4) in laminar (Re =100, 200 and turbulent (Re =104) regimes, where T and D are the distance between the centers of cylinders and the diameter of cylinders, respectively. The Reynolds number is based on the diameter of cylinders, D. The pressure field and vorticity distributions along with the associated streamlines and the time histories of hydrodynamic forces were also calculated and analyzed for different gap ratios. Generally, different flow patterns were observed as the gap ratio and Reynolds number varied. Accordingly, the hydrodynamic forces showed irregular variations for small gaps while they took a regular pattern at higher spacing ratios.
引用
收藏
页码:792 / 805
页数:13
相关论文
共 50 条
  • [21] Numerical Study of Flow around Two Circular Cylinders in Tandem, Side-By-Side and Staggered Arrangements
    Skonecki, Gracjan M.
    Buick, James M.
    FLUIDS, 2023, 8 (05)
  • [22] Flow around two side-by-side closely spaced circular cylinders
    Alam, Md. Mahbub
    Zhou, Y.
    JOURNAL OF FLUIDS AND STRUCTURES, 2007, 23 (05) : 799 - 805
  • [23] Flow Past Two Rotating Circular Cylinders in a Side-By-Side Arrangement
    Xiao-hui Guo
    Jian-zhong Lin
    Cheng-xu Tu
    Hao-li Wang
    Journal of Hydrodynamics, 2009, 21 : 143 - 151
  • [24] FLOW PAST TWO ROTATING CIRCULAR CYLINDERS IN A SIDE-BY-SIDE ARRANGEMENT
    GUO Xiao-hui
    JournalofHydrodynamics, 2009, 21 (02) : 143 - 151
  • [25] FLOW PAST TWO ROTATING CIRCULAR CYLINDERS IN A SIDE-BY-SIDE ARRANGEMENT
    Guo Xiao-hui
    Lin Jian-zhong
    Tu Cheng-xu
    Wang Hao-li
    JOURNAL OF HYDRODYNAMICS, 2009, 21 (02) : 143 - 151
  • [26] Adaptive solution of flow past two side-by-side circular cylinders
    Ding, H
    Shu, C
    MODERN PHYSICS LETTERS B, 2005, 19 (28-29): : 1459 - 1462
  • [27] Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers
    Kang, S
    PHYSICS OF FLUIDS, 2003, 15 (09) : 2486 - 2498
  • [28] SIMULATION OF THE WAKE OF THE FLOW AROUND TWO SIDE-BY-SIDE CIRCULAR CYLINDERS AT REYNOLDS NUMBER 5000
    Jensen, Anna Lyhne
    Sorensen, Henrik
    Haervig, Jakob
    PROCEEDINGE OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2019, VOL 1, 2019,
  • [29] Numerical study on Laminar flow over three side-by-side cylinders
    Kang, SM
    KSME INTERNATIONAL JOURNAL, 2004, 18 (10): : 1869 - 1879
  • [30] Numerical study on laminar flow over three side-by-side cylinders
    Sangmo Kang
    KSME International Journal, 2004, 18 : 1869 - 1879