15N Photo-CIDNP MAS NMR To Reveal Functional Heterogeneity in Electron Donor of Different Plant Organisms

被引:0
作者
Geertje J. Janssen
Esha Roy
Jörg Matysik
A. Alia
机构
[1] Leiden University,Leiden Institute of Chemistry
来源
Applied Magnetic Resonance | 2012年 / 42卷
关键词
Nuclear Magnetic Resonance; Electron Paramagnetic Resonance; Dynamic Nuclear Polarization; Spinacia Oleracea; Primary Electron Donor;
D O I
暂无
中图分类号
学科分类号
摘要
In plants and cyanobacteria, two light-driven electron pumps, photosystems I and II (PSI, PSII), facilitate electron transfer from water to carbon dioxide with quantum efficiency close to unity. While similar in structure and function, the reaction centers of PSI and PSII operate at widely different potentials with PSI being the strongest reducing agent known in living nature. Photochemically induced dynamic nuclear polarization (photo-CIDNP) in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) measurements provides direct excess to the heart of large photosynthetic complexes (A. Diller, Alia, E. Roy, P. Gast, H.J. van Gorkom, J. Zaanen, H.J.M. de Groot, C. Glaubitz, J. Matysik, Photosynth. Res. 84, 303–308, 2005; Alia, E. Roy, P. Gast, H.J. van Gorkom, H.J.M. de Groot, G. Jeschke, J. Matysik, J. Am. Chem. Soc. 126, 12819–12826, 2004). By combining the dramatic signal increase obtained from the solid-state photo-CIDNP effect with 15N isotope labeling of PSI, we were able to map the electron spin density in the active cofactors of PSI and study primary charge separation at atomic level. We compare data obtained from two different PSI proteins, one from spinach (Spinacia oleracea) and other from the aquatic plant duckweed (Spirodella oligorrhiza). Results demonstrate a large flexibility of the PSI in terms of its electronic architecture while their electronic ground states are strictly conserved.
引用
收藏
页码:57 / 67
页数:10
相关论文
共 93 条
  • [11] Borovikova A.(2005)undefined J. Am. Chem. Soc. 127 11910-11911
  • [12] Nelson N.(2010)undefined Proc. Natl. Acad. Sci. USA 107 4123-4128
  • [13] Romberger S.P.(1994)undefined J. Am. Chem. Soc. 116 8362-8363
  • [14] Golbeck J.H.(1996)undefined J. Am. Chem. Soc. 118 5867-5873
  • [15] Holzwarth A.R.(2000)undefined Proc. Natl. Acad. Sci. USA 97 9865-9870
  • [16] Kass H.(2010)undefined Appl. Magn. Reson. 37 49-63
  • [17] Rautter J.(2007)undefined Proc. Natl. Acad. Sci. USA 104 12767-12771
  • [18] Bonigk B.(2003)undefined Chem. Phys. 294 239-255
  • [19] Hofer P.(2009)undefined Proc. Natl. Acad. Sci. USA 106 22281-22286
  • [20] Lubitz W.(2010)undefined Photosynth. Res. 104 275-282