Wandering Subspaces of the Bergman Space and the Dirichlet Space Over Dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{D}^{n}}}$$\end{document}

被引:0
作者
Arup Chattopadhyay
B. Krishna Das
Jaydeb Sarkar
S. Sarkar
机构
[1] Indian Statistical Institute,Statistics and Mathematics Unit
[2] Indian Institute of Science,Department of Mathematics
关键词
47A13; 47A15; 47A20; 47L99; Invariant subspace; Beurling’s theorem; Bergman space; Dirichlet space; Hardy space; Doubly commuting invariant subspace;
D O I
10.1007/s00020-014-2128-y
中图分类号
学科分类号
摘要
Doubly commuting invariant subspaces of the Bergman space and the Dirichlet space over the unit polydisc Dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}^n}$$\end{document} (with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 2}$$\end{document}) are investigated. We show that for any non-empty subset α={α1,…,αk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha=\{\alpha_1,\ldots,\alpha_k\}}$$\end{document} of {1,…,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{1,\ldots,n\}}$$\end{document} and doubly commuting invariant subspace S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{S}}$$\end{document} of the Bergman space or the Dirichlet space over Dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}^n}$$\end{document}, restriction of the multiplication operator tuple on S,Mα|S:=(Mzα1|S,…,Mzαk|S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{S}, M_{\alpha}|_\mathcal{S}:=(M_{z_{\alpha_1}}|_\mathcal{S},\ldots, M_{z_{\alpha_k}}|_\mathcal{S})}$$\end{document}, always possesses generating wandering subspace of the form ⋂i=1k(S⊖zαiS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigcap_{i=1}^k(\mathcal{S}\ominus z_{\alpha_i}\mathcal{S})$$\end{document}.
引用
收藏
页码:567 / 577
页数:10
相关论文
共 14 条
[1]  
Aronszajn N.(1950)Theory of reproducing kernels Trans. Am. Math. Soc. 68 337-404
[2]  
Aleman A.(1996)Beurling’s theorem for the Bergman space Acta. Math. 177 275-310
[3]  
Richter S.(1949)On two problems concerning linear transformations in Hilbert space Acta. Math. 81 239-255
[4]  
Sundberg C.(1961)Shifts on Hilbert spaces J. Reine Angew. Math. 208 102-112
[5]  
Beurling A.(1988)The validity of Beurling theorems in polydiscs Proc. Amer. Math. Soc. 103 145-148
[6]  
Halmos P.R.(2010)Invariant subspaces in Bergman space over the bidisc Proc. Am. Math. Soc. 138 2425-2430
[7]  
Mandrekar V.(1988)Invariant subspaces of the Dirichlet shift J. Reine Angew. Math. 386 205-220
[8]  
Redett D.(2001)Wold-type decompositions and wandering subspaces for operators close to isometries J. Reine Angew. Math. 531 147-189
[9]  
Tung J.(2013)Doubly commuting submodules of the Hardy module over polydiscs Studia Math. 217 179-192
[10]  
Richter S.(undefined)undefined undefined undefined undefined-undefined