Inequalities for the Fractional Derivatives of Trigonometric Polynomials in Spaces with Integral Metrics

被引:0
|
作者
Yu. S. Kolomoitsev
机构
[1] Ukrainian National Academy of Sciences,Institute of Applied Mathematics and Mechanics
来源
关键词
Fractional Derivative; Trigonometric Polynomial; Homogeneous Function; Fractional Power; Small Positive Number;
D O I
暂无
中图分类号
学科分类号
摘要
We establish necessary and sufficient conditions for the validity of Bernstein-type inequalities for the fractional derivatives of trigonometric polynomials of several variables in spaces with integral metrics. The problem of sharpness of these inequalities is investigated.
引用
收藏
页码:45 / 61
页数:16
相关论文
共 50 条
  • [21] The Bernstein-Szegö inequality for fractional derivatives of trigonometric polynomials
    V. V. Arestov
    P. Yu. Glazyrina
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 13 - 28
  • [22] Bernstein-Szego inequality for fractional derivatives of trigonometric polynomials
    Arestov, V. V.
    Glazyrina, P. Yu.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (01): : 17 - 31
  • [23] The Bernstein-Szego Inequality for Fractional Derivatives of Trigonometric Polynomials
    Arestov, V. V.
    Glazyrina, P. Yu.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 : S13 - S28
  • [24] SOME INEQUALITIES FOR TRIGONOMETRIC POLYNOMIALS
    FRAPPIER, C
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1985, 39 (OCT): : 216 - 226
  • [25] Integral norms of trigonometric polynomials
    Yudin, VA
    MATHEMATICAL NOTES, 2001, 70 (1-2) : 275 - 282
  • [26] Integral Norms of Trigonometric Polynomials
    V. A. Yudin
    Mathematical Notes, 2001, 70 : 275 - 282
  • [27] TWO TRIGONOMETRIC INTEGRAL INEQUALITIES
    Zhao, Yi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03): : 901 - 913
  • [28] INEQUALITY OF DIFFERENT METRICS FOR TRIGONOMETRIC POLYNOMIALS
    ARESTOV, VV
    MATHEMATICAL NOTES, 1980, 27 (3-4) : 265 - 269
  • [29] On the inequality of different metrics for trigonometric polynomials
    Yessenbayeva, G. A.
    Yesbayev, A. N.
    Poppell, H.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2019, 93 (01): : 102 - 107
  • [30] SOME INEQUALITIES FOR ALGEBRAIC AND TRIGONOMETRIC POLYNOMIALS
    KRISTIANSEN, GK
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 20 (OCT): : 300 - 314