On the distribution of integer points of rational curves

被引:0
作者
Dimitrios Poulakis
Evaggelos Voskos
机构
[1] Aristotle University of Thessaloniki,Department of Mathematics
关键词
distribution; Puiseux series; rational curve; integer point;
D O I
10.1023/A:1025709925724
中图分类号
学科分类号
摘要
Let F(X,Y) be an absolutely irreducible polynomial in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}\left[ {X,Y} \right]$$ \end{document} such that the algebraic curve C: F(X,Y) = 0 has infinitely many integer points. In this paper we obtain an explicit estimate on the distribution of integer points of C.
引用
收藏
页码:89 / 101
页数:12
相关论文
共 50 条
[31]   On the problem of proper reparametrization for rational curves and surfaces [J].
Pérez-Díaz, S .
COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (04) :307-323
[32]   Double rational normal curves with linear syzygies [J].
Nicolae Manolache .
manuscripta mathematica, 2001, 104 :503-517
[33]   Algebraic and Geometric Properties of a Family of Rational Curves [J].
Hoffman, J. William ;
Wang, Haohao .
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (02) :306-316
[34]   A simple method for implicitizing rational curves and surfaces [J].
Wang, DM .
JOURNAL OF SYMBOLIC COMPUTATION, 2004, 38 (01) :899-914
[35]   The upper bound estimate of the number of integer points on elliptic curves y2 = x3 + p2rx [J].
Zhang, Jin ;
Li, Xiaoxue .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[36]   Syzygies and projective generation of plane rational curves [J].
Casas-Alvero, Eduardo .
JOURNAL OF ALGEBRA, 2015, 427 :183-214
[37]   Double rational normal curves with linear syzygies [J].
Manolache, N .
MANUSCRIPTA MATHEMATICA, 2001, 104 (04) :503-517
[38]   An algorithm for the normal bundle of rational monomial curves [J].
Alzati A. ;
Re R. ;
Tortora A. .
Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (2) :291-306
[39]   Normal bundles of rational curves in projective spaces [J].
Ran, Ziv .
ASIAN JOURNAL OF MATHEMATICS, 2007, 11 (04) :567-608
[40]   Distribution of points on the circle [J].
Rodseth, Oystein J. .
JOURNAL OF NUMBER THEORY, 2007, 127 (01) :127-135