On the distribution of integer points of rational curves

被引:0
作者
Dimitrios Poulakis
Evaggelos Voskos
机构
[1] Aristotle University of Thessaloniki,Department of Mathematics
关键词
distribution; Puiseux series; rational curve; integer point;
D O I
10.1023/A:1025709925724
中图分类号
学科分类号
摘要
Let F(X,Y) be an absolutely irreducible polynomial in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}\left[ {X,Y} \right]$$ \end{document} such that the algebraic curve C: F(X,Y) = 0 has infinitely many integer points. In this paper we obtain an explicit estimate on the distribution of integer points of C.
引用
收藏
页码:89 / 101
页数:12
相关论文
共 50 条
  • [21] Twelve Rational curves on Enriques surfaces
    Sławomir Rams
    Matthias Schütt
    Research in the Mathematical Sciences, 2021, 8
  • [22] Implicitization of rational curves and polynomial surfaces
    Yu, Jian-ping
    Sun, Yong-li
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (01) : 13 - 29
  • [23] Rational curves on Del Pezzo manifolds
    Zahariuc, Adrian
    ADVANCES IN GEOMETRY, 2018, 18 (04) : 451 - 465
  • [24] Rational curves on a general heptic fourfold
    Hana, Gert Monstad
    Johnsen, Trygve
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (05) : 861 - 885
  • [25] Rational curves on a smooth Hermitian surface
    Ojiro, Norifumi
    HIROSHIMA MATHEMATICAL JOURNAL, 2019, 49 (01) : 161 - 173
  • [26] Positivity results for spaces of rational curves
    Beheshti, Roya
    Riedl, Eric
    ALGEBRA & NUMBER THEORY, 2020, 14 (02) : 485 - 500
  • [27] Twelve Rational curves on Enriques surfaces
    Rams, Slawomir
    Schuett, Matthias
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2021, 8 (02)
  • [28] The convex hull of rational plane curves
    Elber, G
    Kim, MS
    Heo, HS
    GRAPHICAL MODELS, 2001, 63 (03) : 151 - 162
  • [29] The upper bound estimate of the number of integer points on elliptic curves y2=x3+p2rx
    Jin Zhang
    Xiaoxue Li
    Journal of Inequalities and Applications, 2014
  • [30] Quadratic estimates for the number of integer points in convex bodies
    Colzani L.
    Rocco I.
    Travaglini G.
    Rendiconti del Circolo Matematico di Palermo, 2005, 54 (2) : 241 - 252