On the distribution of integer points of rational curves

被引:0
|
作者
Dimitrios Poulakis
Evaggelos Voskos
机构
[1] Aristotle University of Thessaloniki,Department of Mathematics
关键词
distribution; Puiseux series; rational curve; integer point;
D O I
10.1023/A:1025709925724
中图分类号
学科分类号
摘要
Let F(X,Y) be an absolutely irreducible polynomial in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}\left[ {X,Y} \right]$$ \end{document} such that the algebraic curve C: F(X,Y) = 0 has infinitely many integer points. In this paper we obtain an explicit estimate on the distribution of integer points of C.
引用
收藏
页码:89 / 101
页数:12
相关论文
共 50 条
  • [1] Integer points on rational curves with fixed gcd
    Poulakis, D
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 64 (3-4): : 369 - 379
  • [2] K3 surfaces, rational curves, and rational points
    Baragar, Arthur
    McKinnon, David
    JOURNAL OF NUMBER THEORY, 2010, 130 (07) : 1470 - 1479
  • [3] ON UNIFORM BOUNDS FOR RATIONAL POINTS ON RATIONAL CURVES AND THIN SETS
    Rault, Patrick X.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 23 (02): : 171 - 185
  • [4] On uniform bounds for rational points on rational curves of arbitrary degree
    Rault, Patrick X.
    JOURNAL OF NUMBER THEORY, 2013, 133 (09) : 3112 - 3118
  • [5] Counting Integer Points in Parametric Polytopes Using Barvinok's Rational Functions
    Sven Verdoolaege
    Rachid Seghir
    Kristof Beyls
    Vincent Loechner
    Maurice Bruynooghe
    Algorithmica, 2007, 48 : 37 - 66
  • [6] RATIONAL CURVES AND SURFACES WITH RATIONAL OFFSETS
    POTTMANN, H
    COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (02) : 175 - 192
  • [7] Enumerating rational curves: The rational fibration method
    Caporaso, L
    Harris, J
    COMPOSITIO MATHEMATICA, 1998, 113 (02) : 209 - 236
  • [8] Approximation of Planar Rational Curves by Polynomial Curves
    Zhang Hongmei
    Zhang Zhigao
    Pei Zhili
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING, 2014, 5 : 1311 - +
  • [9] Nuclei of normal rational curves
    Gmainer J.
    Havlicek H.
    Journal of Geometry, 2000, 69 (1-2) : 117 - 130
  • [10] Parameter spaces for curves on surfaces and enumeration of rational curves
    Caporaso, L
    Harris, J
    COMPOSITIO MATHEMATICA, 1998, 113 (02) : 155 - 208