A stochastic Galerkin method for Maxwell equations with uncertainty

被引:0
作者
Lizheng Cheng
Bo Wang
Ziqing Xie
机构
[1] Hunan Normal University,LCSM (MOE) and School of Mathematics and Statistics
[2] Hunan International Economics University,Information Science and Engineering College
来源
Acta Mathematica Scientia | 2020年 / 40卷
关键词
Maxwell equations; random inputs; stochastic Galerkin method; gPC expansion; convergence analysis; 35Q61; 65C30; 65M70;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we investigate a stochastic Galerkin method for the Maxwell equations with random inputs. The generalized Polynomial Chaos (gPC) expansion technique is used to obtain a deterministic system of the gPC expansion coefficients. The regularity of the solution with respect to the random is analyzed. On the basis of the regularity results, the optimal convergence rate of the stochastic Galerkin approach for Maxwell equations with random inputs is proved. Numerical examples are presented to support the theoretical analysis.
引用
收藏
页码:1091 / 1104
页数:13
相关论文
共 58 条
  • [11] Tang T(2017)A two-level stochastic collocation method for semilinear elliptic equations with random cofficients J Comput Appl Math 315 195-207
  • [12] Zhou T(2016)A stochastic Galerkin method for the Boltzmann equation with un certainty J Comput Phys 315 150-168
  • [13] Xiu D B(2006)Computational modeling of uncertainty in time-domain electromagnetics SIAM J Sci Comput 28 751-775
  • [14] Wiener N(2015)Uncertainty quantification for Maxwell equations using stochastic collocation and model order reduction Int J Uncertain Quantif 5 195-208
  • [15] Xiu D B(2010)On the approximate controllability of the stochastic Maxwell equations IMA J Math Control Inform 27 103-118
  • [16] Zhang G N(2018)Research on the effects of different sampling algorithm on Sobol sensitivity analysis Acta Math Sci 38A 372-384
  • [17] Gunzburger M(2012)The Gelfand approximations on generalized Besov class Acta Math Sci 32A 148-160
  • [18] Galindo D(2014)Ω in the deterministic and Monte Carlo settings J Comput Phys 268 255-268
  • [19] Jantsch P(2006)A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise SIAM J Sci Comput 28 751-775
  • [20] Webster C G(2002)Computational modeling of uncertainty in time-domain electromagnetics SIAM J Sci Comput 24 619-644