Nonconstant Steady States in a Predator–Prey System with Density-Dependent Motility

被引:0
作者
Jianping Gao
Jianghong Zhang
Wenyan Lian
机构
[1] Gannan Normal University,College of Mathematics and Computers
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2024年 / 47卷
关键词
Predator–prey system; Density-dependent motility; Nonconstant steady states; Leray–Schauder degree; 35E15; 92B05; 92-10;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the existence, structure and stability of the nonconstant steady states for a predator–prey system with density-dependent motility under the Neumann boundary condition. By applying the Leray–Schauder degree theory, we show that under certain conditions, a small prey diffusion rate can ensure the existence of the nonconstant steady states, which is verified by numerical simulations. Over 1D domain, we treat prey diffusion rate as a bifurcation parameter and obtain the local and global structure of steady states near the homogeneous steady states with the aid of bifurcation theory and index theory. Moreover, a stability criterion of the bifurcating steady states is also presented. Finally, we give the existence and stability of time-periodic nontrivial solutions.
引用
收藏
相关论文
共 95 条
[1]  
Ainseba B(2008)A reaction-diffusion system modeling predator-prey with prey-taxis Nonlinear Anal. Real World Appl. 9 2086-2105
[2]  
Bendahmane M(2022)Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension Discrete Contin. Dyn. Syst. Ser. B 27 1397-1420
[3]  
Noussair A(1977)Integral averaging and bifurcation J. Differ. Equ. 26 112-159
[4]  
Cao Q(1973)Bifurcation, perturbation of simple eigenvalues, and linearized stability Arch. Ration. Mech. Anal. 52 161-180
[5]  
Cai YL(1977)The Hopf bifurcation theorem in infinite dimensions Arch. Ration. Mech. Anal. 67 53-72
[6]  
Luo Y(2021)Comparison methods for a Keller–Segel-type model of pattern formations with density-suppressed motilities Calc. Var. 60 1-37
[7]  
Chow SN(2021)Global dynamics and spatio-temporal patterns in a two-species chemotaxis system with two chemicals Z. Angew. Math. Phys. 72 1-28
[8]  
Mallet-Paret J(2018)Bifurcation and spatio-temporal patterns in a diffusive predator-prey system Nonlinear Anal. Real World Appl. 42 448-477
[9]  
Crandall MG(2015)Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis Appl. Math. Lett. 49 73-77
[10]  
Rabinowitz PH(2004)Global bifurcation and structure of turing patterns in the 1-D Lengyel-Epstein model J. Dyn. Differ. Equ. 16 297-320