On the Minimum Length of q-ary Linear Codes of Dimension Five

被引:0
作者
TATSUYA MARUTA
机构
[1] Aichi Prefectural Women's Junior College,
来源
Geometriae Dedicata | 1997年 / 65卷
关键词
linear code; the Griesmer bound; minihyper.;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n_q \left( {k,d} \right) $$ \end{document} be the smallest integer n for which there exists a linear code of length n, dimension k and minimum Hamming distance d over the Galois field GF(q). In this paper we determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n_q \left( {5,d} \right) $$ \end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$q^4 - q^3 - q - \sqrt q - 2 < d \leqslant q^4 - q^3 + q^2 - q$$ \end{document} for all q, using a geometric method.
引用
收藏
页码:299 / 304
页数:5
相关论文
共 18 条
  • [11] Newton D. E.(undefined)-2q;q] codes meeting the Griesmer bound undefined undefined undefined-undefined
  • [12] Landgev I.(undefined)Optimal ternary linear codes undefined undefined undefined-undefined
  • [13] Maruta T.(undefined)On the nonexistence of quaternary [51, 4, 37] codes undefined undefined undefined-undefined
  • [14] Hill R.(undefined)On the non-existence of linear codes attaining the Griesmer bound undefined undefined undefined-undefined
  • [15] Maruta T.(undefined)Algebraically punctured cyclic codes undefined undefined undefined-undefined
  • [16] Solomon G.(undefined)An updated table of minimum distance bounds for binary linear codes undefined undefined undefined-undefined
  • [17] Stiffler J. J.(undefined)undefined undefined undefined undefined-undefined
  • [18] Verhoeff T.(undefined)undefined undefined undefined undefined-undefined