On the Minimum Length of q-ary Linear Codes of Dimension Five

被引:0
作者
TATSUYA MARUTA
机构
[1] Aichi Prefectural Women's Junior College,
来源
Geometriae Dedicata | 1997年 / 65卷
关键词
linear code; the Griesmer bound; minihyper.;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n_q \left( {k,d} \right) $$ \end{document} be the smallest integer n for which there exists a linear code of length n, dimension k and minimum Hamming distance d over the Galois field GF(q). In this paper we determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n_q \left( {5,d} \right) $$ \end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$q^4 - q^3 - q - \sqrt q - 2 < d \leqslant q^4 - q^3 + q^2 - q$$ \end{document} for all q, using a geometric method.
引用
收藏
页码:299 / 304
页数:5
相关论文
共 18 条
  • [1] Calderbank R.(1986)The geometry of two-weight codes Bull. London Math. Soc. 18 97-122
  • [2] Kantor W. M.(1994)Optimal linear codes over GF(4) Discrete Math. 125 187-199
  • [3] Greenough P. P.(1960)A bound for error-correcting codes IBM J. Res. Develop. 4 532-542
  • [4] Hill R.(1993)A characterization of some [ Discrete Math. 116 229-268
  • [5] Griesmer J. H.(1992)]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry Designs, Codes Crypt. 2 225-229
  • [6] Hamada N.(1992)On the construction of [q Designs, Codes Crypt. 2 137-157
  • [7] Hamada N.(1996)+q Finite Fields Appl. 2 96-110
  • [8] Helleseth T.(1996)-q,5,q Geom. Dedicata 60 1-7
  • [9] Ytrehus Ø.(1965)-q Inform. Control 8 170-179
  • [10] Hill R.(1987)+ q IEEE Trans. Inform. Theory 33 665-680