An on Orbit Determination of Point Spread Functions for the Interface Region Imaging Spectrograph

被引:0
作者
Hans Courrier
Charles Kankelborg
Bart De Pontieu
Jean-Pierre Wülser
机构
[1] Montana State Univ. Bozeman,Solar Group, Dept. of Physics
[2] Lockheed Martin Advanced Technology Center,Lockheed Martin Solar & Astrophysics Laboratory
来源
Solar Physics | 2018年 / 293卷
关键词
Sun: atmosphere; Instrumentation: high angular resolution; Space vehicles: instruments;
D O I
暂无
中图分类号
学科分类号
摘要
Using the 2016 Mercury transit of the Sun, we characterize on orbit spatial point spread functions (PSFs) for the Near- (NUV) and Far- (FUV) Ultra-Violet spectrograph channels of NASA’s Interface Region Imaging Spectrograph (IRIS). A semi-blind Richardson–Lucy deconvolution method is used to estimate PSFs for each channel. Corresponding estimates of Modulation Transfer Functions (MTFs) indicate resolution of 2.47 cycles/arcsec in the NUV channel near 2796 Å and 2.55 cycles/arcsec near 2814 Å. In the short (≈1336Å\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,1336~\mathring{\mathrm{A}}$\end{document}) and long (≈1394Å\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,1394~\mathring{\mathrm{A}}$\end{document}) wavelength FUV channels, our MTFs show pixel-limited resolution (3.0 cycles/arcsec). The PSF estimates perform well under deconvolution, removing or significantly reducing instrument artifacts in the Mercury transit spectra. The usefulness of the PSFs is demonstrated in a case study of an isolated explosive event. PSF estimates and deconvolution routines are provided through a SolarSoft module.
引用
收藏
相关论文
共 203 条
[1]  
Antolin P.(2012)Observing the fine structure of loops through high-resolution spectroscopic observations of coronal rain with the CRISP instrument at the Swedish Solar Telescope Astrophys. J. 745 152-undefined
[2]  
Rouppe van der Voort L.(1988)Iterative blind deconvolution method and its applications Opt. Lett. 13 547-undefined
[3]  
Ayers G.R.(2009)Image deblurring with Poisson data: From cells to galaxies Inverse Probl. 25 936-undefined
[4]  
Dainty J.C.(1995)The O IV and S IV intercombination lines in solar and stellar ultraviolet spectra Astrophys. J. 444 2733-undefined
[5]  
Bertero M.(2014)The Interface Region Imaging Spectrograph (IRIS) Solar Phys. 289 1264-undefined
[6]  
Boccacci P.(2009)Solar coronal structure and stray light in TRACE Astrophys. J. 690 13-undefined
[7]  
Desiderá G.(1994)Explosive events, magnetic reconnection, and coronal heating Adv. Space Res. 14 41-undefined
[8]  
Vicidomini G.(1989)Explosive events in the solar transition zone Solar Phys. 123 58-undefined
[9]  
Cook J.W.(1995)Blind deconvolution by means of the Richardson–Lucy algorithm J. Opt. Soc. Am. A 12 1132-undefined
[10]  
Keenan F.P.(2010)A transition region explosive event observed in He  Astrophys. J. 719 497-undefined