Quantum Capacitance: A Perspective from Physics to Nanoelectronics

被引:0
作者
Yuranan Hanlumyuang
Pradeep Sharma
机构
[1] Kasetsart University,Department of Materials Engineering, Faculty of Engineering
[2] University of Houston,Department of Mechanical Engineering
[3] University of Houston,Department of Physics
来源
JOM | 2014年 / 66卷
关键词
BaTiO3; Dielectric Interface; Quantum Capacitance; Geometric Capacitance; Classical Electrostatic;
D O I
暂无
中图分类号
学科分类号
摘要
All materials (including conductors) possess the so-called quantum capacitance, which is present in series with the traditional geometric (electrostatic) capacitance. It is usually a large positive quantity and therefore irrelevant for most materials except for nanostructures. Quantum capacitance has been found to reduce the overall capacitance of nanostructures compared with what is predicted by classical electrostatics. One of many tantalizing recent physical revelations about quantum capacitance is that it can posses a negative value, hence, allowing for the possibility of enhancing (sometimes dramatically) the overall capacitance in some particular material systems—beyond the scaling predicted by classical electrostatics. We provide here a short overview of this subject and review some recent developments.
引用
收藏
页码:660 / 663
页数:3
相关论文
共 50 条
[21]   Envisaging the quantum capacitance in modified monolayer silicon carbide [J].
Itas, Yahaya Saadu ;
Alsuhaibani, Amnah Mohammed ;
Refat, Moamen S. ;
Alrahili, Mazen R. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (09)
[22]   Quantum capacitance of quasi-2D-crystals [J].
Lukiyanets, Bohdan A. ;
Matulka, Dariia V. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (22)
[23]   Quantum capacitance in monolayers of silicene and related buckled materials [J].
Nawaz, S. ;
Tahir, M. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 76 :169-172
[24]   Quantum Effects on the Gate Capacitance of Trigate SOI MOSFETs [J].
Granzner, Ralf ;
Thiele, Stefan ;
Schippel, Christian ;
Schwierz, Frank .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (12) :3231-3238
[25]   Nanoscale capacitance: A quantum tight-binding model [J].
Zhai, Feng ;
Wu, Jian ;
Li, Yang ;
Lu, Jun-Qiang .
PHYSICS LETTERS A, 2017, 381 (01) :44-47
[26]   Carrier Density and Quantum Capacitance Model for Doped Graphene [J].
Chandrasekar, L. ;
Pradhan, K. P. .
2020 IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM 2020), 2020,
[27]   A general analytical method for finding the quantum capacitance of graphene [J].
Jerry P. Selvaggi .
Journal of Computational Electronics, 2018, 17 :1268-1275
[28]   Quantum capacitance modulation of MXenes by metal atoms adsorption [J].
Si, Xue ;
Xu, Qiang ;
Lin, Jianyan ;
Yang, Guangmin .
APPLIED SURFACE SCIENCE, 2023, 618
[29]   Unraveling quantum capacitance in supercapacitors: Energy storage applications [J].
Kolavada, Himalay ;
Gajjar, P. N. ;
Gupta, Sanjeev K. .
JOURNAL OF ENERGY STORAGE, 2024, 81
[30]   Acetone Sensing Using Graphene Quantum Capacitance Varactors [J].
Ma, Rui ;
Su, Qun ;
Li, Jing ;
Koester, Steven J. .
2016 IEEE SENSORS, 2016,