On the Relation between Denjoy–Khintchine and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \operatorname{HK}_{r} $\end{document}-Integrals

被引:0
作者
V. A. Skvortsov
P. Sworowski
机构
[1] Moscow Center for Fundamental and Applied Mathematics,Mathematical Department
[2] Moscow State University,undefined
[3] Casimir the Great University,undefined
[4] Institute of Mathematics,undefined
关键词
-derivative; -integral; variational measure; Denjoy–Khintchine integral; 517.987;
D O I
10.1134/S0037446624020162
中图分类号
学科分类号
摘要
We locate Musial and Sagher’s concept of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \operatorname{HK}_{r} $\end{document}-integration within the approximate Henstock–Kurzweil integral theory. If we restrict the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \operatorname{HK}_{r} $\end{document}-integral by the requirement that the indefinite \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \operatorname{HK}_{r} $\end{document}-integral is continuous, then it becomes included in the classical Denjoy–Khintchine integral. We provide a direct argument demonstrating that this inclusion is proper.
引用
收藏
页码:441 / 447
页数:6
相关论文
共 21 条
[1]  
Gordon L(1966)Perron’s integral for derivatives in  Studia Math. 28 295-316
[2]  
Musial PM(2004)The Studia Math. 160 53-81
[3]  
Sagher Y(2022)-Henstock–Kurzweil integral Proc. Amer. Math. Soc. 150 2107-2114
[4]  
Musial P(2022)The Math. Notes 111 414-422
[5]  
Skvortsov V(2015)-integral is not contained in the P Electron. J. Differential Equations 2015 7 pp.-160
[6]  
Tulone F(2019)-integral Minimax Theory Appl. 4 151-717
[7]  
Musial P(2022)On descriptive characterizations of an integral recovering a function from its Mediterr. J. Math. 19 96-381
[8]  
Skvortsov VA(1964)-derivative Proc. Japan Acad. 40 713-630
[9]  
Tulone F(1996)Integration by parts for the Real Analysis Exchange 22 377-40
[10]  
Musial P(1997) Henstock–Kurzweil integral Real Analysis Exchange 23 611-277