Reidemeister torsion for flat superconnections

被引:0
|
作者
Camilo Arias Abad
Florian Schätz
机构
[1] Universität Zürich,Institut für Mathematik
[2] IST,Center for Mathematical Analysis, Geometry and Dynamical Systems
来源
Journal of Homotopy and Related Structures | 2014年 / 9卷
关键词
Holonomy; Iterated integrals; Superconnections; Reidemeister torsion; Simplicial complexes;
D O I
暂无
中图分类号
学科分类号
摘要
We use higher parallel transport—more precisely, the integration A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{A }_\infty $$\end{document}-functor constructed in Arias Abad and Schätz (The A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{A}_\infty $$\end{document} de Rham theorem and the integration of representations up to homotopy. Int Math Res Not, 2013) and Block and Smith (A Riemann–Hilbert correspondence for infinity local systems. arXiv:0908.2843, 2012)—to define Reidemeister torsion for flat superconnections. We conjecture a version of the Cheeger–Müller theorem, namely that the combinatorial Reidemeister torsion coincides with the analytic torsion defined by Mathai and Wu (Contemp Math 546, 199–212, 2011).
引用
收藏
页码:579 / 606
页数:27
相关论文
共 50 条