Calderón–Zygmund Operators on Weighted Hardy Spaces

被引:0
作者
Ming-Yi Lee
机构
[1] National Central University,Department of Mathematics
来源
Potential Analysis | 2013年 / 38卷
关键词
Calderón–Zygmund operators; Littlewood-Paley theory; Weighted Hardy spaces; 42B20; 42B30;
D O I
暂无
中图分类号
学科分类号
摘要
We study the boundedness of Calderón–Zygmund operators on weighted Hardy spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^p_w$\end{document} using Littlewood-Paley theory. It is shown that if a Calderón–Zygmund operator T satisfies T*1 = 0, then T is bounded on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^p_w$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w\in A_{p(1+\frac\varepsilon n)}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac n{n+\varepsilon}<p\le1$\end{document}, where ε is the regular exponent of the kernel of T.
引用
收藏
页码:699 / 709
页数:10
相关论文
共 32 条
[1]  
Calderón AP(1952)On the existence of certain singular integrals Acta Math. 88 85-139
[2]  
Zygmund A(2008)Rough singular integrals on Triebel-Lizorkin space and Besov space J. Math. Anal. Appl. 347 493-501
[3]  
Chen Y(1978)Au delà opérateurs pseudo-différentials Astérisque 57 1-198
[4]  
Ding Y(1979)Singular integrals near Proc. Symp. Pure Math. 35 163-165
[5]  
Coifman RR(1979)Boundedness of singular integrals on multiparameter weighted Hardy spaces Potential Anal. 37 31-56
[6]  
Meyer Y(1994)Calderón–Zygmund operators on compact Lie groups Math. Z. 216 401-415
[7]  
Connett W(1972) spaces of several variables Acta Math. 129 137-193
[8]  
Ding Y(1979)Weighted Diss. Math. 162 1-63
[9]  
Han Y(2001) spaces J. Geom. Anal. 11 241-264
[10]  
Lu G(1974)Wavelet characterization of weighted spaces Studia Math. 49 107-124