The distribution of the large partial quotients in continued fraction expansions

被引:0
作者
Bo Tan
Chen Tian
Baowei Wang
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
来源
Science China Mathematics | 2023年 / 66卷
关键词
continued fraction; Hausdorff dimension; Borel-Bernstein theorem; 11K50; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of large partial quotients destroys many limit theorems in the metric theory of continued fractions. To achieve some variant forms of limit theorems, a common approach mostly used in practice is to discard the largest partial quotient, while this approach works in obtaining limit theorems only when there cannot exist two terms of large partial quotients in a metric sense. Motivated by this, we are led to consider the metric theory of points with at least two large partial quotients. More precisely, denoting by [a1(x), a2(x),…] the continued fraction expansion of x ∈ [0, 1) and letting ψ: ℕ → ℝ+ be a positive function tending to infinity as n → ∞, we present a complete characterization on the metric properties of the set, i.e., E(ψ)={x∈[0,1):∃1≼k≠ℓ≼n,ak(x)≽ψ(n),aℓ(x)≽ψ(n)for infinitely manyn∈ℕ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\left( \psi \right) = \left\{ {x \in \left[ {0,1} \right):\exists \,1 \leqslant k \ne \ell \leqslant n,\,\,{a_k}\left( x \right) \geqslant \psi \left( n \right),\,\,{a_\ell }\left( x \right) \geqslant \psi \left( n \right)\,\,{\rm{for}}\,{\rm{infinitely}}\,{\rm{many}}\,n \in \mathbb{N}} \right\}$$\end{document} in the sense of the Lebesgue measure (the Borel-Bernstein type result) and the Hausdorff dimension (the Jarnik type result). The main result implies that any finite deletion from a1(x) + ⋯ + an(x) cannot result in a law of large numbers.
引用
收藏
页码:935 / 956
页数:21
相关论文
共 38 条
  • [1] Bernstein F(1912)Über eine Anwendung der Mengenlehre auf ein der theorie der säkularen Störungen herrührendes problem Math Ann 71 417-439
  • [2] Borel É(1912)Sur un problème de probabilités relatif aux fractions continues Math Ann 72 578-584
  • [3] Chung K L(1952)On the application of the Borel-Cantelli lemma Trans Amer Math Soc 72 179-186
  • [4] Erdös P(1986)Estimates for partial sums of continued fraction partial quotients Pacific J Math 122 73-82
  • [5] Diamond H G(1997)Appendix to the paper by T. Łúczak—A simple proof of the lower bound: On the fractional dimension of sets of continued fractions Mathematika 44 54-55
  • [6] Vaaler J D(1974)An iterated logarithm type theorem for the largest coefficient in continued fractions Acta Arith 25 359-364
  • [7] Feng D J(2002)Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems Acta Math Hungar 96 27-98
  • [8] Wu J(2020)Metric properties of the product of consecutive partial quotients in continued fractions Israel J Math 238 901-943
  • [9] Liang C(2018)Hausdorff measure of sets of Dirichlet non-improvable numbers Mathematika 64 502-518
  • [10] Galambos J(2018)A zero-one law for improvements to Dirichlet’s theorem Proc Amer Math Soc 146 1833-1844