Systolic Algorithms and Architectures for High-Throughput Processing Applications

被引:1
作者
Kung Yao
Flavio Lorenzelli
机构
[1] University of California,Electrical Engineering Department
[2] STMicroelectronics-Zerodue,undefined
来源
Journal of Signal Processing Systems | 2008年 / 53卷
关键词
systolic array; least-squares estimation; recursive least-squares estimation; QR decomposition; Kalman filtering; linear algebra;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we survey a number of linear algebra algorithms that are used in many modern real-time high-throughput applications. We focus in particular on algorithms that are used in applications as diverse as adaptive filtering/beamforming, communications, signal/array processing, control, etc. We first consider least-squares estimation, QR decomposition, singular value decomposition, recursive least-squares estimation, and Kalman filtering algorithms. In particular, the QR decomposition which is used in least-squares solutions of linear system of equations, also forms one component of more complex algorithms such as Kalman filtering and the singular value decomposition. Systolic arrays, due to their modularity and regularity, are perfect matches for all the algorithms considered in this paper. All these problems are defined and described alongside the systolic algorithms and the architectures that implement them.
引用
收藏
页码:15 / 34
页数:19
相关论文
共 48 条
  • [1] Brent R. P.(1985)The Solution of Singular-Value and Symmetric Eigenvalue Problems on Multiprocessor Arrays SIAM J. Sci. Statist. Comput. 6 69-84
  • [2] Luk F.(1987)Rank-Revealing QR Factorizations Linear Algebra Appl. 88/89 67-82
  • [3] Chan T. F.(1987)Systolic Kalman Filtering based on QR Decomposition Proc. SPIE 826 25-32
  • [4] Chen M. J.(1986)Design Methodology for Systolic Arrays Proc. SPIE 696 246-259
  • [5] Yao K.(1986)Rank and Null Space Calculations Using Matrix Decompositions without Column Interchanges Linear Algebra Appl. 74 47-71
  • [6] Delosme J. M.(1981)Matrix Triangularization by Systolic Arrays Proc. SPIE 298 19-26
  • [7] Ipsen I. C. F.(1992)Rank-Revealing QR Factorizations and the Singular Value Decomposition Math. Comput. 58 213-232
  • [8] Foster L. V.(1846)Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommende Gleichungen numerisch aufzulösen J. Reine Angew. Math. 30 51-94
  • [9] Gentleman W. M.(1986)A Parallel Architecture for Kalman Filter Measurement Update and Parameter Estimation Automatica 22 43-57
  • [10] Kung H. T.(1960)A New Approach to Linear Filtering and Prediction Problems J. Basic Eng. 82 35-45