The unique identification of variable-order fractional wave equations

被引:0
作者
Xiangcheng Zheng
Hong Wang
机构
[1] Peking University,School of Mathematical Sciences
[2] University of South Carolina,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2021年 / 72卷
关键词
Determination of variable order; Variable-order time-fractional wave partial differential equation; Inverse problem; Uniqueness; Well-posedness; Smoothing properties; 26A33; 35R30; 35L15;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the well-posedness and smoothing properties of a variable-order time-fractional wave partial differential equation in multiple space dimensions. Accordingly, we prove the unique determination of the variable order in this model with the observations of the unknown solutions on an arbitrarily small spatial domain over a sufficiently small time interval. The proved theorem provides a guidance where the measurements should be taken and ensure the unique identification of the variable order.
引用
收藏
相关论文
共 97 条
[1]  
Bagley R(1983)A theoretical basis for the application of fractional calculus to viscoelasticity J. Rheol. 27 201-210
[2]  
Torvik P(2018)Wellposedness of a nonlinear peridynamic model Nonlinearity 32 1-1305
[3]  
Coclite G(2019)A difference method for the McKean–Vlasov equation Z. Angew. Math. Phys. 70 149-696
[4]  
Dipierro S(2020)Singularity formation in fractional Burgers equations J. Nonlinear Sci. 30 1285-86
[5]  
Maddalena F(2006)Convolution quadrature time discretization of fractional diffusion-wave equations Math. Comput. 75 673-2613
[6]  
Valdinoci E(2000)Mapping between solutions of fractional diffusion-wave equations Frac. Calc. Appl. Anal. 3 75-A170
[7]  
Coclite G(1968)Effect of plasticizers on the viscoelastic properties of poly(vinyl chloride) J. Appl. Polym. Sci. 12 2597-131
[8]  
Risebro N(2014)Two schemes for fractional diffusion and diffusion-wave equations with nonsmooth data SIAM J. Sci. Comput. 38 A146-3881
[9]  
Coclite G(2018)Discrete maximal regularity of time-stepping schemes for fractional evolution equations Numer. Math. 138 101-579
[10]  
Dipierro S(2018)On time-fractional diffusion equations with space-dependent variable order Annales Henri Poincaré 19 3855-25