The unique identification of variable-order fractional wave equations

被引:0
|
作者
Xiangcheng Zheng
Hong Wang
机构
[1] Peking University,School of Mathematical Sciences
[2] University of South Carolina,Department of Mathematics
关键词
Determination of variable order; Variable-order time-fractional wave partial differential equation; Inverse problem; Uniqueness; Well-posedness; Smoothing properties; 26A33; 35R30; 35L15;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the well-posedness and smoothing properties of a variable-order time-fractional wave partial differential equation in multiple space dimensions. Accordingly, we prove the unique determination of the variable order in this model with the observations of the unknown solutions on an arbitrarily small spatial domain over a sufficiently small time interval. The proved theorem provides a guidance where the measurements should be taken and ensure the unique identification of the variable order.
引用
收藏
相关论文
共 50 条
  • [1] The unique identification of variable-order fractional wave equations
    Zheng, Xiangcheng
    Wang, Hong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [2] The Maximum Principle for Variable-Order Fractional Diffusion Equations and the Estimates of Higher Variable-Order Fractional Derivatives
    Xue, Guangming
    Lin, Funing
    Su, Guangwang
    FRONTIERS IN PHYSICS, 2020, 8
  • [3] Numerical simulations for fractional variable-order equations
    Mozyrska, Dorota
    Oziablo, Piotr
    IFAC PAPERSONLINE, 2018, 51 (04): : 853 - 858
  • [4] Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems
    Zheng, Xiangcheng
    Wang, Hong
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1848 - 1870
  • [5] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Hoa T. B. Ngo
    Mohsen Razzaghi
    Thieu N. Vo
    Numerical Algorithms, 2023, 92 : 1571 - 1588
  • [6] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Ngo, Hoa T. B.
    Razzaghi, Mohsen
    Vo, Thieu N.
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1571 - 1588
  • [7] Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Cheng, Jin
    Wang, Hong
    INVERSE PROBLEMS, 2019, 35 (12)
  • [8] Analysis and discretization of a variable-order fractional wave equation
    Zheng, Xiangcheng
    Wang, Hong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 104
  • [9] Multiplicity results for variable-order fractional Laplacian equations with variable growth
    Xiang, Mingqi
    Zhang, Binlin
    Yang, Di
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 178 : 190 - 204
  • [10] Existence results for variable-order fractional Kirchhoff equations with variable exponents
    Mazan, Hatim
    Masmodi, Mohamed
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,