A Left Linear Weighted Composition Operator on Quaternionic Fock Space

被引:0
作者
Yu-Xia Liang
机构
[1] Tianjin Normal University,School of Mathematical Sciences
来源
Results in Mathematics | 2019年 / 74卷
关键词
Weighted composition operator; quaternionic Fock space; boundedness; compactness; self-adjoint; isometry; Primary 30G35; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
A left linear weighted composition operator Wf,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{f,\varphi }$$\end{document} is defined on slice regular quaternionic Fock space F2(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}^2(\mathbb {H})$$\end{document}. We carry out a comprehensive analysis on its classical properties. Firstly, the boundedness and compactness of weighted composition operator on F2(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}^2(\mathbb {H})$$\end{document} are investigated systematically, which can be seen new and brief characterizations. And then all normal bounded weighted composition operators are found, particularly, equivalent conditions for self-adjoint weighted operators on F2(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}^2(\mathbb {H})$$\end{document} are developed. Finally, we describe all types of isometric weighted composition operators on F2(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}^2(\mathbb {H})$$\end{document}.
引用
收藏
相关论文
共 11 条
[1]  
Kumar S(2017)Composition operators in Bloch spaces of slice hyperholomorphic functions Adv. Appl. Clifford Algebra 27 1459-1477
[2]  
Manzoor K(2014)Normal and isometric weighted composition operators on the Fock space Bull. Lond. Math. Soc. 46 847-856
[3]  
Singh P(2017)Carleson measures for Hardy and Bergman spaces in the quaternionic unit ball J. Lond. Math. Soc. 95 853-874
[4]  
Le T(2015)Bloch, Besov and Dirichlet spaces of slice hyperholomorphic functions Complex Anal. Oper. Theory 9 479-517
[5]  
Sabadini I(2015)A class of weighted composition operators on the Fock space J. Math. Res. Appl. 35 303-310
[6]  
Saracco A(undefined)undefined undefined undefined undefined-undefined
[7]  
Villalba C(undefined)undefined undefined undefined undefined-undefined
[8]  
Colombo F(undefined)undefined undefined undefined undefined-undefined
[9]  
Gantner J(undefined)undefined undefined undefined undefined-undefined
[10]  
Zhao L(undefined)undefined undefined undefined undefined-undefined