Global well-posedness of the 3D generalized rotating magnetohydrodynamics equations

被引:0
作者
Wei Hua Wang
Gang Wu
机构
[1] University of Chinese Academy of Sciences,School of Mathematical Sciences
来源
Acta Mathematica Sinica, English Series | 2018年 / 34卷
关键词
Magnetohydrodynamics; fractional MHD; incompressible; rotation framework; Coriolis force; 35Q35; 42B37; 35Q86; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the global well-posedness of the generalized rotating magnetohydrodynamics equations if the initial data are in X1−2α defined by x1−2α={u∈D′(R3):∫R3|ξ|1−2α|u^(ξ)|dξ<+∞}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x^{1 - 2\alpha }} = \left\{ {u \in D'\left( {{R^3}} \right):{{\int_{{R^3}} {\left| \xi \right|} }^{1 - 2\alpha }}\left| {\hat u\left( \xi \right)} \right|d\xi < + \infty } \right\}$$\end{document}. In addition, we also give Gevrey class regularity of the solution.
引用
收藏
页码:992 / 1000
页数:8
相关论文
共 51 条
[1]  
Babin A.(1997)Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids Asymptot. Anal. 15 103-150
[2]  
Mahalov A.(1999)Global regularity of 3D rotating Navier–Stokes equations for resonant domains Indiana Univ. Math. J. 48 1133-1176
[3]  
Nicolaenko B.(2001)3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity Indiana Univ. Math. J. 50 1-35
[4]  
Babin A.(2015)Existence and Analyticity of Lei–Lin Solution to the Navier–Stokes Equations Proc. Amer. Math. Soc. 143 2887-2892
[5]  
Mahalov A.(2002)Anisotropy and dispersion in rotating fluids Stud. Math. Appl. 31 171-192
[6]  
Nicolaenko B.(2009)Wellposedness and stability results for the Navier–Stokes equations in R3 Ann. Inst. H. Poincaré Anal. Non Linéaire 26 599-624
[7]  
Babin A.(2010)Large, global solutions to the Navier–Stokes equations, slowly varying in one direction Trans. Amer. Math. Soc. 362 2859-2873
[8]  
Mahalov A.(1972)Inéquations en thermoélasticité et magnétohydrodynamique Arch. Ration. Mech. Anal. 46 241-279
[9]  
Nicolaenko B.(1989)Gevrey class regularity for the solutions of the Navier–Stokes equations J. Funct. Anal. 87 359-369
[10]  
Bae H.(2015)Remarks on the Cauchy problem for the axisymmetric Navier–Stokes equations Confluentes Mathematici 7 67-92