On the approximation for generalized Szász-Durrmeyer type operators in the space Lp[0,∞)

被引:0
作者
Guofen Liu
Xiuzhong Yang
机构
[1] Hebei Normal University,College of Mathematics and Information Science
[2] Hebei Key Laboratory of Computational Mathematics and Applications,undefined
来源
Journal of Inequalities and Applications | / 2014卷
关键词
Szász-Durrmeyer-Bézier operator; direct and inverse theorems; -functional; modulus of smoothness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give the direct approximation theorem, the inverse theorem, and the equivalence theorem for Szász-Durrmeyer-Bézier operators in the space Lp[0,∞) (1≤p≤∞) with Ditzian-Totik modulus.
引用
收藏
相关论文
共 13 条
[1]  
Chang G(1983)Generalized Bernstein-Bézier polynomials J. Comput. Math 4 322-327
[2]  
Liu Z(1986)Approximation of continuous functions by the generalized Bernstein-Bézier polynomials Approx. Theory Appl 4 105-130
[3]  
Zeng X(1998)On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions J. Approx. Theory 95 369-387
[4]  
Piriou A(1998)On the rate of the convergence of the generalized Szász type operators for functions of bounded variation J. Math. Anal. Appl 226 309-325
[5]  
Zeng X(2002)Rate of convergence of Baskakov-Bézier type operators for locally bounded functions Comput. Math. Appl 44 1445-1453
[6]  
Zeng X(2012)Some approximation properties of Baskakov-Durrmeyer-Stancu operators Appl. Math. Comput 218 6549-6556
[7]  
Gupta V(2007)The central approximation theorems for Baskakov-Bézier operators J. Approx. Theory 147 112-124
[8]  
Verma DK(undefined)undefined undefined undefined undefined-undefined
[9]  
Gupta V(undefined)undefined undefined undefined undefined-undefined
[10]  
Agrawal PN(undefined)undefined undefined undefined undefined-undefined