A note on the periodic decomposition problem for semigroups

被引:0
作者
Bálint Farkas
机构
[1] University of Wuppertal,Faculty of Mathematics and Natural Sciences
来源
Semigroup Forum | 2016年 / 92卷
关键词
Periodic decomposition problem; -(semi)group; Norm-continuous one-parameter semigroup; Amenable semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
Given T1,⋯,Tn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1,\dots , T_n$$\end{document} commuting power-bounded operators on a Banach space we study under which conditions the equality ker(T1-I)⋯(Tn-I)=ker(T1-I)+⋯+ker(Tn-I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ker (T_1-\mathrm {I})\cdots (T_n-\mathrm {I})=\ker (T_1-\mathrm {I})+\cdots +\ker (T_n-\mathrm {I})$$\end{document} holds true. This problem, known as the periodic decomposition problem, goes back to I. Z. Ruzsa. In this short note we consider the case when Tj=T(tj),tj>0,j=1,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_j=T(t_j), t_j>0, j=1,\dots , n$$\end{document} for some one-parameter semigroup (T(t))t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T(t))_{t\ge 0}$$\end{document}. We also look at a generalization of the periodic decomposition problem when instead of the cyclic semigroups {Tjn:n∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T_j^n:n \in \mathbb {N}\}$$\end{document} more general semigroups of bounded linear operators are considered.
引用
收藏
页码:587 / 597
页数:10
相关论文
共 9 条
  • [1] Basit RB(1971)Generalization of two theorems of M.I. Kadets concerning the indefinite integral of abstract almost periodic functions Mat. Zametki 9 311-321
  • [2] Gajda Z(1992)Note on decomposition of bounded functions into the sum of periodic terms Acta Math. Hung. 59 103-106
  • [3] Kadets VM(2000)Averaging technique in the periodic decomposition problem Mat. Fiz. Anal. Geom. 7 184-195
  • [4] Shumyatskiy BM(2001)Additions to the periodic decomposition theorem Acta Math. Hung. 90 293-305
  • [5] Kadets VM(1996)-semigroups norm continuous at infinity Semigroup Forum 52 213-224
  • [6] Shumyatskiy BM(1973)Mittelergodische Halbgruppen linearer operatoren Ann. Inst. Fourier (Grenoble) 23 75-87
  • [7] Martinez J(undefined)undefined undefined undefined undefined-undefined
  • [8] Mazon JM(undefined)undefined undefined undefined undefined-undefined
  • [9] Nagel RJ(undefined)undefined undefined undefined undefined-undefined