Robust principal component analysis via ES-algorithm

被引:0
|
作者
Yaeji Lim
Yeonjoo Park
Hee-Seok Oh
机构
[1] Seoul National University,Department of Statistics
[2] University of Illinois at Urbana-Champaign,Department of Statistics
关键词
primary 62H25; secondary 62F35; ES-algorithm; Principal component analysis; Pseudo data; Robustness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new method for robust principal component analysis (PCA) is proposed. PCA is a widely used tool for dimension reduction without substantial loss of information. However, the classical PCA is vulnerable to outliers due to its dependence on the empirical covariance matrix. To avoid such weakness, several alternative approaches based on robust scatter matrix were suggested. A popular choice is ROBPCA that combines projection pursuit ideas with robust covariance estimation via variance maximization criterion. Our approach is based on the fact that PCA can be formulated as a regression-type optimization problem, which is the main difference from the previous approaches. The proposed robust PCA is derived by substituting square loss function with a robust penalty function, Huber loss function. A practical algorithm is proposed in order to implement an optimization computation, and furthermore, convergence properties of the algorithm are investigated. Results from a simulation study and a real data example demonstrate the promising empirical properties of the proposed method.
引用
收藏
页码:149 / 159
页数:10
相关论文
共 50 条
  • [31] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430
  • [32] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333
  • [33] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [34] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [35] Robust Discriminative Principal Component Analysis
    Xu, Xiangxi
    Lai, Zhihui
    Chen, Yudong
    Kong, Heng
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 231 - 238
  • [36] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    NEUROCOMPUTING, 2020, 391 : 119 - 128
  • [37] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [38] Robust algorithms for principal component analysis
    Yang, TN
    Wang, SD
    PATTERN RECOGNITION LETTERS, 1999, 20 (09) : 927 - 933
  • [39] Double robust principal component analysis
    Wang Q.
    Gao Q.
    Sun G.
    Ding C.
    Neurocomputing, 2022, 391 : 119 - 128
  • [40] Flexible robust principal component analysis
    He, Zinan
    Wu, Jigang
    Han, Na
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 603 - 613