Fuzzy Interacting Multiple Model H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty$$\end{document} Particle Filter Algorithm Based on Current Statistical Model

被引:0
作者
Qicong Wang
Xiaoqiang Chen
Lin Zhang
Jin Li
Chong Zhao
Man Qi
机构
[1] Xiamen University,Department of Computer Science
[2] Xiamen University,Shenzhen Research Institute
[3] Xiamen City Management Administrative Enforcement Bureau,Department of Computing
[4] Canterbury Christ Church University,undefined
关键词
Fuzzy theory; Interacting multiple model; Particle filter; H; filter;
D O I
10.1007/s40815-019-00678-y
中图分类号
学科分类号
摘要
In this paper, fuzzy theory and interacting multiple model are introduced into H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty$$\end{document} filter-based particle filter to propose a new fuzzy interacting multiple model H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty$$\end{document} particle filter based on current statistical model. Each model uses H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty$$\end{document} particle filter algorithm for filtering, in which the current statistical model can describe the maneuver of target accurately and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty$$\end{document} filter can deal with the nonlinear system effectively. Aiming at the problem of large amount of probability calculation in interacting multiple model by using combination calculation method, our approach calculates each model matching probability through the fuzzy theory, which can not only reduce the calculation amount, but also improve the state estimation accuracy to some extent. The simulation results show that the proposed algorithm can be more accurate and robust to track maneuvering target.
引用
收藏
页码:1894 / 1905
页数:11
相关论文
共 95 条
[1]  
Radu V(2018)Multiple-model estimators for tracking sharply maneuvering ground targets IEEE Trans. Aerospace Electron. Syst. 54 1404-1414
[2]  
Yaakov B(2018)Modified switched IMM estimator based on autoregressive extended Viterbi method for maneuvering target tracking J. Syst. Eng.Electron. 29 1142-1157
[3]  
Peter W(2018)Multiple pedestrian tracking from monocular videos in an interacting multiple model framework IEEE Trans. Image Process. 27 1361-1375
[4]  
Hadaegh M(2017)Parallel interacting multiple model-based human motion prediction for motion planning of companion robots IEEE Trans. Autom. Sci. Eng. 14 52-61
[5]  
Khaloozadeh H(2017)Souad Chebbi on the convergence of constrained particle filters IEEE Signal Process. Lett. 24 858-862
[6]  
Jiang Z(2019)Robust target motion analysis using the possibility particle filter IET Radar Sonar Navig. 13 18-22
[7]  
Huynh DQ(2018)Multiple model ballistic missile tracking with state-dependent transitions and gaussian particle filtering IEEE Trans. Aerospace Electron. Syst. 54 1066-1081
[8]  
Lee D(2018)Augmented human state estimation using interacting multiple model particle filters with probabilistic data association IEEE Robot. Autom. Lett. 3 1872-1879
[9]  
Liu C(2016)Improved particle filtering techniques based on generalized interactive genetic algorithm J. Syst. Eng. Electron. 27 242-250
[10]  
Liao Y(2017)Efficient monochromatic and bichromatic probabilistic reverse top-k query processing for uncertain big data J. Computer Syst. Sci. 89 92-113