Existence of solutions for parabolic variational inequalities

被引:0
作者
Farah Balaadich
机构
[1] Sultan Moulay Slimane University,Laboratory of Applied Mathematics and Scientific Computing
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2024年 / 73卷
关键词
Weak solutions; Variational inequalities; Young measures; 35D30; 35K86;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the study of parabolic variational inequality. Under appropriate assumptions on the main functions, we obtain the existence of weak solutions after the construction of the penalized Young measure by Galerkin’s method and the penalty method. The passage to the limit follows relying on the theory of Young measures.
引用
收藏
页码:731 / 745
页数:14
相关论文
共 46 条
[1]  
Azroul E(2019)Quasilinear elliptic systems in perturbed form Int. J. Nonlinear Anal. Appl. 10 255-266
[2]  
Balaadich F(2020)A weak solution to quasilinear elliptic problems with perturbed gradient Rend. Circ. Mat. Palermo. 6 57-72
[3]  
Azroul E(2020)Strongly quasilinear parabolic systems in divergence form with weak monotonicity Khayyam J. Math. 42 460-473
[4]  
Balaadich F(2021)On strongly quasilinear elliptic systems with weak monotonicity J. Appl. Anal. 72 1005-1016
[5]  
Azroul E(2021)Existence of solutions for a class of Kirchhoff-type equation via Young measures Numer. Funct. Anal. Optim. 14 16-24
[6]  
Balaadich F(2023)On p-Kirchhoff-type parabolic problems Rend. Circ. Mat. Palermo II. Ser 58 171-181
[7]  
Azroul E(2023)A note on quasilinear elliptic systems with Eurasian Math. J. 38 545-574
[8]  
Balaadich F(2021)-data Stud. Sci. Math. Hungar. 226 48-53
[9]  
Azroul E(2022)Weak solutions for obstacle problems with weak monotonicity Inverse Probl. 3 497-519
[10]  
Balaadich F(1997)Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems Math. Z. 107 3668-3680