On the complexity of path problems in properly colored directed graphs

被引:0
|
作者
Donatella Granata
Behnam Behdani
Panos M. Pardalos
机构
[1] University of Rome “La Sapienza”,Department of Statistics, Probability and Applied Statistics
[2] University of Florida,Department of Industrial and Systems Engineering
[3] University of Florida,Center for Applied Optimization, Department of Industrial and Systems Engineering
来源
Journal of Combinatorial Optimization | 2012年 / 24卷
关键词
Graph coloring; Complexity; Chromatic number; Longest path; Shortest path;
D O I
暂无
中图分类号
学科分类号
摘要
We address the complexity class of several problems related to finding a path in a properly colored directed graph. A properly colored graph is defined as a graph G whose vertex set is partitioned into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{X}(G)$\end{document} stable subsets, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{X}(G)$\end{document} denotes the chromatic number of G. We show that to find a simple path that meets all the colors in a properly colored directed graph is NP-complete, and so are the problems of finding a shortest and longest of such paths between two specific nodes.
引用
收藏
页码:459 / 467
页数:8
相关论文
共 50 条
  • [21] Complexity of probabilistic reasoning in directed-path singly-connected Bayes networks
    Shimony, SE
    Domshlak, C
    ARTIFICIAL INTELLIGENCE, 2003, 151 (1-2) : 213 - 225
  • [22] Generation of colored graphs with isomorphism rejection
    Razumovsky, P. V.
    Abrosimov, M. B.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2021, 21 (02): : 267 - 277
  • [23] On Chromatic Number of Colored Mixed Graphs
    Das, Sandip
    Nandi, Soumen
    Sen, Sagnik
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, 2017, 10156 : 130 - 140
  • [24] Detours in directed graphs
    Fomin, Fedor, V
    Golovach, Petr A.
    Lochet, William
    Sagunov, Danil
    Saurabh, Saket
    Simonov, Kirill
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2023, 137 : 66 - 86
  • [25] A Colored Path Problem and Its Applications
    Eiben, Eduard
    Kanj, Iyad
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (04)
  • [26] Path eccentricity of graphs
    Gomez, Renzo
    Gutierrez, Juan
    DISCRETE APPLIED MATHEMATICS, 2023, 337 : 1 - 13
  • [27] Complexity of colouring problems restricted to unichord-free and {square,unichord)-free graphs
    Machado, Raphael C. S.
    de Figueiredo, Celina M. H.
    Trotignon, Nicolas
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 191 - 199
  • [28] Generalized Parametric Path Problems
    Gajjar, Kshitij
    Varma, Girish
    Chatterjee, Prerona
    Radhakrishnan, Jaikumar
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 161, 2021, 161 : 536 - 546
  • [29] Exact approaches for the orderly colored longest path problem: Performance comparison
    Carrabs, Francesco
    Cerulli, Raffaele
    Felici, Giovanni
    Singh, Gaurav
    COMPUTERS & OPERATIONS RESEARCH, 2019, 101 : 275 - 284
  • [30] Uniform Lie algebras and uniformly colored graphs
    Payne, Tracy L.
    Schroeder, Matthew
    ADVANCES IN GEOMETRY, 2017, 17 (04) : 507 - 524