Variational construction of unbounded orbits in Lagrangian systems

被引:0
作者
Chong-Qing Cheng
Xia Li
机构
[1] Nanjing University,Department of Mathematics
[2] Suzhou University of Science and Technology,Department of Mathematics
来源
Science China Mathematics | 2010年 / 53卷
关键词
positive definite Lagrangian; variational method; unbounded orbit; 37J40; 37J50;
D O I
暂无
中图分类号
学科分类号
摘要
We show the existence of unbounded orbits in perturbations of generic geodesic flow in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{T}^2 $$\end{document} by a generic periodic potential. Different from previous work such as in Mather (1997), the initial values of the orbits obtained here are not required sufficiently large.
引用
收藏
页码:617 / 624
页数:7
相关论文
共 19 条
[1]  
Arnol’d V. I.(1964)Instability of dynamical systems with several degrees of freedom Sov Math Dokl 5 581-585
[2]  
Bolotin S.(1999)Unbounded growth of energy in nonautonomous Hamiltonian systems Nonlinearity 12 365-388
[3]  
Treschev D.(2004)Existence of diffusion orbits in a priori unstable Hamiltonian systems J Differ Geom 67 457-517
[4]  
Cheng C.-Q.(2009)Arnold diffusion in Hamiltonian systems: a priori unstable case J Differ Geom 82 229-277
[5]  
Yan J.(2000)A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of T2 Comm Math Phys 209 353-392
[6]  
Cheng C.-Q.(2006)Geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristic and rigorous verification on a model Mem Amer Math Soc 179 1-141
[7]  
Yan J.(2006)Orbits of unbounded energy in quasi-periodic perturbations of geodesic flows Adv Math 202 64-188
[8]  
Delshama A.(1993)Variational construction of connecting orbits Ann Inst Fourier (Grenoble) 43 1349-1386
[9]  
de la Llave R.(1965)On the volume elements on a manifold Trans Amer Math Soc 120 286-294
[10]  
Seara T. M.(2004)Evolution of slow variables in a priori unstable Hamiltonian systems Nonlinearity 17 1803-1841