Analyzing and improving stability of matrix factorization for recommender systems

被引:0
作者
Edoardo D’Amico
Giovanni Gabbolini
Cesare Bernardis
Paolo Cremonesi
机构
[1] University College Dublin,Insight Centre for Data Analytics
[2] University College Cork,Insight Centre for Data Analytics
[3] Politecnico di Milano,undefined
来源
Journal of Intelligent Information Systems | 2022年 / 58卷
关键词
Matrix factorization; Nearest neighbors; Stability; Popularity bias;
D O I
暂无
中图分类号
学科分类号
摘要
Thanks to their flexibility and scalability, collaborative embedding-based models are widely employed for the top-N recommendation task. Their goal is to jointly represent users and items in a common low-dimensional embedding space where users are represented close to items for which they expressed a positive preference. The training procedure of these techniques is influenced by several sources of randomness, that can have a strong impact on the embeddings learned by the models. In this paper we analyze this impact on Matrix Factorization (MF). In particular, we focus on the effects of training the same model on the same data, but with different initial values for the latent representations of users and items. We perform several experiments employing three well known MF implementations over five datasets. We show that different random initializations lead the same MF technique to generate very different latent representations and recommendation lists. We refer to these inconsistencies as instability of representations and instability of recommendations, respectively. We report that stability of item representations is positively correlated to the accuracy of the model. We show that the stability issues affect also the items for which the recommender correctly predicts positive preferences. Moreover, we highlight that the effect is stronger for less popular items. To overcome these drawbacks, we present a generalization of MF called Nearest Neighbors Matrix Factorization (NNMF). The new framework learns the embedding of each user and item as a weighted linear combination of the representations of the respective nearest neighbors. This strategy has the effect to propagate the information about items and users also to their neighbors and allows the embeddings of users and items with few interactions to be supported by a higher amount of information. To empirically demonstrate the advantages of the new framework, we provide a detailed description of the NNMF variants of three common MF techniques. We show that NNMF models, compared to their MF counterparts, largely improve the stability of both representations and recommendations, obtain a higher and more stable accuracy performance, especially on long-tail items, and reach convergence in a fraction of epochs.
引用
收藏
页码:255 / 285
页数:30
相关论文
共 33 条
  • [1] Adomavicius G(2012)Stability of recommendation algorithms ACM Transactions on Information Systems 30 23:1-23:31
  • [2] Zhang J(2014)Improving stability of recommender systems: a meta-algorithmic approach IEEE Transactions on Knowledge and Data Engineering 27 1573-1587
  • [3] Adomavicius G(2011)Utilizing various sparsity measures for enhancing accuracy of collaborative recommender systems based on local and global similarities Expert Systems with Applications 38 5101-5109
  • [4] Zhang J(2002)Stability and generalization Journal of Machine Learning Research 2 499-526
  • [5] Anand D(2016)The movielens datasets: history and context ACM Transactions on Interactive Intelligent Systems 5 19:1-19:19
  • [6] Bharadwaj KK(2010)Factor in the neighbors: scalable and accurate collaborative filtering ACM Transactions Knowledge Discovery from Data 4 1:1-1:24
  • [7] Bousquet O(2009)Matrix factorization techniques for recommender systems Computer 42 30-37
  • [8] Elisseeff A(2014)An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems IEEE Transactions on Industrial Informatics 10 1273-1284
  • [9] Harper FM(2007)Attacks and remedies in collaborative recommendation IEEE Intelligent Systems 22 56-63
  • [10] Konstan JA(2018)Coherence and inconsistencies in rating behavior: estimating the magic barrier of recommender systems User Modeling and User-Adapted Interaction 28 97-125