On Banach spaces with unconditional bases

被引:0
作者
Wolfgang Lusky
机构
[1] University of Paderborn,Institute for Mathematics
来源
Israel Journal of Mathematics | 2004年 / 143卷
关键词
Banach Space; Hardy Space; Trigonometric Polynomial; Finite Rank; Unconditional Basis;
D O I
暂无
中图分类号
学科分类号
摘要
LetX be a Banach space with a sequence of linear, bounded finite rank operatorsRn:X→X such thatRnRm=Rmin(n,m) ifn≠m and limn→∞Rnx=x for allx∈X. We prove that, ifRn−Rn−1 factors uniformly through somelp and satisfies a certain additional symmetry condition, thenX has an unconditional basis. As an application, we study conditions on Λ ⊂ ℤ such thatLΛ=closed span\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ {z^k :k \in \Lambda } \right\} \subset L_1 \left( \mathbb{T} \right)$$ \end{document}, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{T} = \left\{ {z \in \mathbb{C}:\left| z \right| = 1} \right\}$$ \end{document}, has an unconditional basis. Examples include the Hardy space\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$H_1 = L_{\mathbb{Z}_ + } $$ \end{document}.
引用
收藏
页码:239 / 251
页数:12
相关论文
共 12 条
[1]  
Bourgain J.(1985)Dichotomie du cotype pour les espaces invariants Comptes Rendus de l'Académie des Sciences, Paris 300 263-266
[2]  
Milman V.(1980)An explicit unconditional basis in H Bulletin des Sciences Mathématiques 104 405-416
[3]  
Carleson L.(1977)Extensions of Hardy spaces and their use in analysis Bulletin of the American Mathematical Society 83 569-645
[4]  
Coifman R. R.(1996)On Banach spaces with bases Journal of Functional Analysis 138 410-425
[5]  
Weiss G.(1980)Isomorphismes entre espaces H Acta Mathematica 145 79-120
[6]  
Lusky W.(1966)Classes H Comptes Rendus de l'Académie des Sciences, Paris 263 716-719
[7]  
Maurey B.(1987), multiplicateurs et fonctions de Littlewood-Paley Acta Mathematica 159 81-98
[8]  
Stein E.(1982)A Banach space without a basis which has the bounded approximation property Arkiv för Matematik 20 293-300
[9]  
Szarek S. J.(1991)The Franklin system is an unconditional basis in H Israel Journal of Mathematics 75 167-191
[10]  
Wojtaszczyk P.(undefined)Orthonormal polynomial bases in function spaces undefined undefined undefined-undefined