Sampling part sizes of random integer partitions

被引:0
作者
Ljuben Mutafchiev
机构
[1] American University in Bulgaria,Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences
来源
The Ramanujan Journal | 2015年 / 37卷
关键词
Integer partitions; Part sizes; Sampling; Limiting distributions; 05A17; 60C05; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a partition of the positive integer n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, selected uniformly at random among all such partitions. Corteel et al. (Random Stuct Algorithm 14:185–197, 1999) proposed three different procedures of sampling parts of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} at random. They obtained limiting distributions of the multiplicity of the randomly chosen part as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. This motivated us to study the asymptotic behavior of the part size under the same sampling conditions. A limit theorem whenever the part is selected uniformly at random among all parts of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} (i.e., without any size bias) was proved earlier by Fristedt (Trans Am Math Soc 337:703–735, 1993). We consider the remaining two (biased) procedures and show that in each of them the randomly chosen part size, appropriately normalized, converges in distribution to a continuous random variable. It turns out that different sampling procedures lead to different limiting distributions.
引用
收藏
页码:329 / 343
页数:14
相关论文
共 50 条
[41]   Binomial transforms and integer partitions into parts of k different magnitudes [J].
Merca, Mircea .
RAMANUJAN JOURNAL, 2018, 46 (03) :765-774
[42]   Number of Vertices of the Polytope of Integer Partitions and Factorization of the Partitioned Number [J].
Shlyk, Vladimir A. .
EXPERIMENTAL MATHEMATICS, 2023, 32 (03) :457-466
[43]   Integer partitions, tilings of 2D-gons and lattices [J].
Latapy, M .
RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2002, 36 (04) :389-399
[44]   Two Self-Dual Lattices of Signed Integer Partitions [J].
Chiaselotti, Giampiero ;
Keith, William ;
Oliverio, Paolo A. .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (06) :3191-3199
[45]   Binomial transforms and integer partitions into parts of k different magnitudes [J].
Mircea Merca .
The Ramanujan Journal, 2018, 46 :765-774
[46]   Asymptotic formulas for integer partitions within the approach of microcanonical ensemble [J].
Prokhorov, D. ;
Rovenchak, A. .
CONDENSED MATTER PHYSICS, 2012, 15 (03)
[47]   On the evolution of random integer compositions [J].
Bevan, David ;
Threlfall, Dan .
ELECTRONIC JOURNAL OF COMBINATORICS, 2025, 32 (01)
[48]   Building initial partitions through sampling techniques [J].
Volkovich, Vladimir ;
Kogan, Jacob ;
Nicholas, Charles .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 183 (03) :1097-1105
[49]   Population Synthesis with Quasirandom Integer Sampling [J].
Smith, Andrew P. ;
Lovelace, Robin ;
Birkin, Mark .
JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, 2017, 20 (04)
[50]   Parallel and sequential dynamics of two discrete models of signed integer partitions [J].
Chiaselotti, G. ;
Gentile, T. ;
Oliverio, P. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 :1249-1261