Sampling part sizes of random integer partitions

被引:0
作者
Ljuben Mutafchiev
机构
[1] American University in Bulgaria,Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences
来源
The Ramanujan Journal | 2015年 / 37卷
关键词
Integer partitions; Part sizes; Sampling; Limiting distributions; 05A17; 60C05; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a partition of the positive integer n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, selected uniformly at random among all such partitions. Corteel et al. (Random Stuct Algorithm 14:185–197, 1999) proposed three different procedures of sampling parts of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} at random. They obtained limiting distributions of the multiplicity of the randomly chosen part as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. This motivated us to study the asymptotic behavior of the part size under the same sampling conditions. A limit theorem whenever the part is selected uniformly at random among all parts of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} (i.e., without any size bias) was proved earlier by Fristedt (Trans Am Math Soc 337:703–735, 1993). We consider the remaining two (biased) procedures and show that in each of them the randomly chosen part size, appropriately normalized, converges in distribution to a continuous random variable. It turns out that different sampling procedures lead to different limiting distributions.
引用
收藏
页码:329 / 343
页数:14
相关论文
共 50 条
[31]   Distinct r-tuples in integer partitions [J].
Archibald, Margaret ;
Blecher, Aubrey ;
Knopfmacher, Arnold .
RAMANUJAN JOURNAL, 2019, 50 (02) :237-252
[32]   On integer partitions and continued fraction type algorithms [J].
Wael Baalbaki ;
Claudio Bonanno ;
Alessio Del Vigna ;
Thomas Garrity ;
Stefano Isola .
The Ramanujan Journal, 2024, 63 :873-915
[33]   On the Maximal Multiplicity of Parts in a Random Integer Partition [J].
Ljuben R. Mutafchiev .
The Ramanujan Journal, 2005, 9 :305-316
[34]   On integer partitions and the Wilcoxon rank-sum statistic [J].
Sills, Andrew V. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (24) :8954-8963
[35]   A lower bound on the release of differentially private integer partitions [J].
Alda, Francesco ;
Simon, Hans Ulrich .
INFORMATION PROCESSING LETTERS, 2018, 129 :1-4
[36]   Optimal transport for some symmetric, multidimensional integer partitions [J].
Adu, Daniel Owusu ;
Keliher, Daniel .
DISCRETE APPLIED MATHEMATICS, 2024, 343 :159-165
[37]   HILBERT MEETS RAMANUJAN: SINGULARITY THEORY AND INTEGER PARTITIONS [J].
Mourtada, Hussein .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 62 (01) :93-111
[38]   On the maximal multiplicity of parts in a random integer partition [J].
Mutafchiev, LR .
RAMANUJAN JOURNAL, 2005, 9 (03) :305-316
[39]   A central limit theorem for integer partitions into small powers [J].
Gabriel F. Lipnik ;
Manfred G. Madritsch ;
Robert F. Tichy .
Monatshefte für Mathematik, 2024, 203 :149-173
[40]   THE STRUCTURE OF RANDOM PARTITIONS OF LARGE INTEGERS [J].
FRISTEDT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (02) :703-735