Sampling part sizes of random integer partitions

被引:0
作者
Ljuben Mutafchiev
机构
[1] American University in Bulgaria,Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences
来源
The Ramanujan Journal | 2015年 / 37卷
关键词
Integer partitions; Part sizes; Sampling; Limiting distributions; 05A17; 60C05; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a partition of the positive integer n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, selected uniformly at random among all such partitions. Corteel et al. (Random Stuct Algorithm 14:185–197, 1999) proposed three different procedures of sampling parts of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} at random. They obtained limiting distributions of the multiplicity of the randomly chosen part as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. This motivated us to study the asymptotic behavior of the part size under the same sampling conditions. A limit theorem whenever the part is selected uniformly at random among all parts of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} (i.e., without any size bias) was proved earlier by Fristedt (Trans Am Math Soc 337:703–735, 1993). We consider the remaining two (biased) procedures and show that in each of them the randomly chosen part size, appropriately normalized, converges in distribution to a continuous random variable. It turns out that different sampling procedures lead to different limiting distributions.
引用
收藏
页码:329 / 343
页数:14
相关论文
共 50 条
  • [31] Distinct r-tuples in integer partitions
    Archibald, Margaret
    Blecher, Aubrey
    Knopfmacher, Arnold
    [J]. RAMANUJAN JOURNAL, 2019, 50 (02) : 237 - 252
  • [32] On integer partitions and continued fraction type algorithms
    Wael Baalbaki
    Claudio Bonanno
    Alessio Del Vigna
    Thomas Garrity
    Stefano Isola
    [J]. The Ramanujan Journal, 2024, 63 : 873 - 915
  • [33] On the Maximal Multiplicity of Parts in a Random Integer Partition
    Ljuben R. Mutafchiev
    [J]. The Ramanujan Journal, 2005, 9 : 305 - 316
  • [34] On integer partitions and the Wilcoxon rank-sum statistic
    Sills, Andrew V.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (24) : 8954 - 8963
  • [35] A lower bound on the release of differentially private integer partitions
    Alda, Francesco
    Simon, Hans Ulrich
    [J]. INFORMATION PROCESSING LETTERS, 2018, 129 : 1 - 4
  • [36] Optimal transport for some symmetric, multidimensional integer partitions
    Adu, Daniel Owusu
    Keliher, Daniel
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 343 : 159 - 165
  • [37] HILBERT MEETS RAMANUJAN: SINGULARITY THEORY AND INTEGER PARTITIONS
    Mourtada, Hussein
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 62 (01) : 93 - 111
  • [38] On the maximal multiplicity of parts in a random integer partition
    Mutafchiev, LR
    [J]. RAMANUJAN JOURNAL, 2005, 9 (03) : 305 - 316
  • [39] A central limit theorem for integer partitions into small powers
    Gabriel F. Lipnik
    Manfred G. Madritsch
    Robert F. Tichy
    [J]. Monatshefte für Mathematik, 2024, 203 : 149 - 173
  • [40] THE STRUCTURE OF RANDOM PARTITIONS OF LARGE INTEGERS
    FRISTEDT, B
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (02) : 703 - 735