Sampling part sizes of random integer partitions

被引:0
作者
Ljuben Mutafchiev
机构
[1] American University in Bulgaria,Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences
来源
The Ramanujan Journal | 2015年 / 37卷
关键词
Integer partitions; Part sizes; Sampling; Limiting distributions; 05A17; 60C05; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a partition of the positive integer n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, selected uniformly at random among all such partitions. Corteel et al. (Random Stuct Algorithm 14:185–197, 1999) proposed three different procedures of sampling parts of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} at random. They obtained limiting distributions of the multiplicity of the randomly chosen part as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. This motivated us to study the asymptotic behavior of the part size under the same sampling conditions. A limit theorem whenever the part is selected uniformly at random among all parts of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} (i.e., without any size bias) was proved earlier by Fristedt (Trans Am Math Soc 337:703–735, 1993). We consider the remaining two (biased) procedures and show that in each of them the randomly chosen part size, appropriately normalized, converges in distribution to a continuous random variable. It turns out that different sampling procedures lead to different limiting distributions.
引用
收藏
页码:329 / 343
页数:14
相关论文
共 50 条
  • [21] Combinatorics and Statistical Mechanics of Integer Partitions
    Matsoukas, Themis
    ENTROPY, 2023, 25 (02)
  • [23] Limit theorems for the number of summands in integer partitions
    Hwang, HK
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 96 (01) : 89 - 126
  • [24] Distinct r-tuples in integer partitions
    Margaret Archibald
    Aubrey Blecher
    Arnold Knopfmacher
    The Ramanujan Journal, 2019, 50 : 237 - 252
  • [25] Distinct r-tuples in integer partitions
    Archibald, Margaret
    Blecher, Aubrey
    Knopfmacher, Arnold
    RAMANUJAN JOURNAL, 2019, 50 (02) : 237 - 252
  • [26] Counting pattern-avoiding integer partitions
    Bloom, Jonathan
    McNew, Nathan
    RAMANUJAN JOURNAL, 2021, 55 (02) : 555 - 591
  • [27] The lattice of integer partitions and its infinite extension
    Latapy, Matthieu
    Phan, Thi Ha Duong
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1357 - 1367
  • [28] Counting pattern-avoiding integer partitions
    Jonathan Bloom
    Nathan McNew
    The Ramanujan Journal, 2021, 55 : 555 - 591
  • [29] Distributions of reciprocal sums of parts in integer partitions
    Kim, Byungchan
    Kim, Eunmi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2025, 211
  • [30] On integer partitions and continued fraction type algorithms
    Baalbaki, Wael
    Bonanno, Claudio
    Del Vigna, Alessio
    Garrity, Thomas
    Isola, Stefano
    RAMANUJAN JOURNAL, 2024, 63 (03) : 873 - 915