共 50 条
Sampling part sizes of random integer partitions
被引:0
作者:
Ljuben Mutafchiev
机构:
[1] American University in Bulgaria,Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences
来源:
The Ramanujan Journal
|
2015年
/
37卷
关键词:
Integer partitions;
Part sizes;
Sampling;
Limiting distributions;
05A17;
60C05;
60F05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document} be a partition of the positive integer n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n$$\end{document}, selected uniformly at random among all such partitions. Corteel et al. (Random Stuct Algorithm 14:185–197, 1999) proposed three different procedures of sampling parts of λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document} at random. They obtained limiting distributions of the multiplicity of the randomly chosen part as n→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\rightarrow \infty $$\end{document}. This motivated us to study the asymptotic behavior of the part size under the same sampling conditions. A limit theorem whenever the part is selected uniformly at random among all parts of λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document} (i.e., without any size bias) was proved earlier by Fristedt (Trans Am Math Soc 337:703–735, 1993). We consider the remaining two (biased) procedures and show that in each of them the randomly chosen part size, appropriately normalized, converges in distribution to a continuous random variable. It turns out that different sampling procedures lead to different limiting distributions.
引用
收藏
页码:329 / 343
页数:14
相关论文
共 50 条