Sampling part sizes of random integer partitions

被引:0
作者
Ljuben Mutafchiev
机构
[1] American University in Bulgaria,Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences
来源
The Ramanujan Journal | 2015年 / 37卷
关键词
Integer partitions; Part sizes; Sampling; Limiting distributions; 05A17; 60C05; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a partition of the positive integer n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, selected uniformly at random among all such partitions. Corteel et al. (Random Stuct Algorithm 14:185–197, 1999) proposed three different procedures of sampling parts of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} at random. They obtained limiting distributions of the multiplicity of the randomly chosen part as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. This motivated us to study the asymptotic behavior of the part size under the same sampling conditions. A limit theorem whenever the part is selected uniformly at random among all parts of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} (i.e., without any size bias) was proved earlier by Fristedt (Trans Am Math Soc 337:703–735, 1993). We consider the remaining two (biased) procedures and show that in each of them the randomly chosen part size, appropriately normalized, converges in distribution to a continuous random variable. It turns out that different sampling procedures lead to different limiting distributions.
引用
收藏
页码:329 / 343
页数:14
相关论文
共 50 条
[21]   Combinatorics and Statistical Mechanics of Integer Partitions [J].
Matsoukas, Themis .
ENTROPY, 2023, 25 (02)
[23]   Limit theorems for the number of summands in integer partitions [J].
Hwang, HK .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 96 (01) :89-126
[24]   Distinct r-tuples in integer partitions [J].
Margaret Archibald ;
Aubrey Blecher ;
Arnold Knopfmacher .
The Ramanujan Journal, 2019, 50 :237-252
[25]   Counting pattern-avoiding integer partitions [J].
Jonathan Bloom ;
Nathan McNew .
The Ramanujan Journal, 2021, 55 :555-591
[26]   Distributions of reciprocal sums of parts in integer partitions [J].
Kim, Byungchan ;
Kim, Eunmi .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2025, 211
[27]   The lattice of integer partitions and its infinite extension [J].
Latapy, Matthieu ;
Phan, Thi Ha Duong .
DISCRETE MATHEMATICS, 2009, 309 (06) :1357-1367
[28]   On integer partitions and continued fraction type algorithms [J].
Baalbaki, Wael ;
Bonanno, Claudio ;
Del Vigna, Alessio ;
Garrity, Thomas ;
Isola, Stefano .
RAMANUJAN JOURNAL, 2024, 63 (03) :873-915
[29]   Dyson's crank and the mex of integer partitions [J].
Hopkins, Brian ;
Sellers, James A. ;
Stanton, Dennis .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 185
[30]   Counting pattern-avoiding integer partitions [J].
Bloom, Jonathan ;
McNew, Nathan .
RAMANUJAN JOURNAL, 2021, 55 (02) :555-591