Quiver tails and N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} SCFTs from M5-branes

被引:0
作者
Prarit Agarwal
Ibrahima Bah
Kazunobu Maruyoshi
Jaewon Song
机构
[1] University of California,Department of Physics
[2] San Diego,Department of Physics and Astronomy
[3] University of Southern California,Institut de Physique Théorique
[4] CEA/Saclay,undefined
[5] California Institute of Technology,undefined
关键词
Supersymmetric gauge theory; Supersymmetry and Duality; Brane Dynamics in Gauge Theories;
D O I
10.1007/JHEP03(2015)049
中图分类号
学科分类号
摘要
We study a class of four-dimensional N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} superconformal field theories obtained by wrapping M5-branes on a Riemann surface with punctures. We identify fourdimensional UV descriptions of the SCFTs corresponding to curves with a class of punctures. The quiver tails appearing in these UV descriptions differ significantly from their N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} counterpart. We find a new type of object that we call the ‘Fan’. We show how to construct new N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} superconformal theories using the Fan. Various dual descriptions for these SCFTs can be identified with different colored pair-of-pants decompositions. For example, we find an N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} analog of Argyres-Seiberg duality for the SU(N ) SQCD with 2N flavors. We also compute anomaly coefficients and superconformal indices for these theories and show that they are invariant under dualities.
引用
收藏
相关论文
共 109 条
[1]  
Gaiotto D(2012)N = 2 dualities JHEP 08 034-undefined
[2]  
Alday LF(2010)Liouville correlation functions from four-dimensional gauge theories Lett. Math. Phys. 91 167-undefined
[3]  
Gaiotto D(2010)S-duality and 2D topological QFT JHEP 03 032-undefined
[4]  
Tachikawa Y(2012)Four-dimensional SCFTs from M 5-branes JHEP 06 005-undefined
[5]  
Gadde A(2013)New N = 1 superconformal field theories in four dimensions JHEP 07 107-undefined
[6]  
Pomoni E(2012)AdS/CFT dual pairs from M 5-branes on Riemann surfaces Phys. Rev. D 85 121901-undefined
[7]  
Rastelli L(2014)The N = 1 superconformal index for class S fixed points JHEP 04 036-undefined
[8]  
Razamat SS(2013)New N = 1 dualities JHEP 06 056-undefined
[9]  
Bah I(2014)M 5 brane and four dimensional N = 1 theories I JHEP 04 154-undefined
[10]  
Beem C(2014)Linear quivers and JHEP 08 121-undefined