Complete Kähler metrics with positive holomorphic sectional curvatures on certain line bundles (related to a cohomogeneity one point of view on a Yau conjecture)

被引:0
作者
Xiaoman Duan
Zhuangdan Guan
机构
[1] Henan University,School of Mathematics and Statistics
[2] The University of California at Riverside,Department of Mathematics
来源
Acta Mathematica Scientia | 2024年 / 44卷
关键词
Kähler Metrics; complete Riemannian metrics; open complex manifolds; holomorphic bisectional curvature; bundle; almost homogeneous manifolds; 53C10; 53C21; 53C26; 53C55; 32L05; 32M12; 32Q20;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study Kähler metrics on a certain line bundle over some compact Kähler manifolds to find complete Kähler metrics with positive holomorphic sectional (or bisectional) curvatures. Thus, we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.
引用
收藏
页码:78 / 102
页数:24
相关论文
共 30 条
  • [1] Chen B(2018)Yau’s uniformization conjecture for manifolds with non-maximal volume growth Acta Mathematica Scientia 38B 1468-1484
  • [2] Zhu X(1994)Compact complex manifolds with numerically effective tangent bundles J Alg Geom 3 295-345
  • [3] Demailly J(1995)Existence of extremal metrices on compact almost homogeneous manifolds with two ends Tran Amer Math Soc 347 2255-2262
  • [4] Peternell T(1995)Quasi-einstein metrics International J Math 6 371-379
  • [5] Schneider M(1999)On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles Math Res Letters 6 547-555
  • [6] Guan Z(2003)Existence of extremal metrics on almost homogeneous manifolds of cohomogeneity one—III Intern J Math 14 259-287
  • [7] Guan Z(2023)Maxwell-Einstein metrics on certain completion of some Acta Mathematica Scientia 43B 363-372
  • [8] Guan D(1976)* bundles Acta Math 137 209-245
  • [9] Guan D(1978) convex functions and manifolds of positive curvature Abh Math Sem Univ Hamburg 47 171-185
  • [10] Guan D(1977)On Kähler manifolds of positive bi-sectional curvature and a theorem of Hartogs Proc Amer Math Soc 64 313-316