Cobalt–Polymer Nanocomposite Dielectrics for Miniaturized Antennas

被引:0
作者
P. Markondeya Raj
Himani Sharma
G. Prashant Reddy
Nevin Altunyurt
Madhavan Swaminathan
Rao Tummala
Vijay Nair
机构
[1] Georgia Institute of Technology,Packaging Research Center
[2] Intel Corporation,undefined
来源
Journal of Electronic Materials | 2014年 / 43卷
关键词
Antenna; nanocomposites; substrates; integration; magnetodielectrics; magnetic loss;
D O I
暂无
中图分类号
学科分类号
摘要
Cobalt–polymer magnetic nanocomposites have been synthesized and characterized for their microstructure and properties such as permeability, permittivity, dielectric and magnetic losses from 100 MHz to 2 GHz to study their suitability as antenna dielectrics. Oxide-passivated cobalt nanoparticles were dispersed in epoxies to form nanocomposite toroids and thin-film resonator structures on organic substrates. Permeabilities of 2.10 and 2.65 were measured up to 500 MHz, respectively, with 25-nm to 50-nm and 5-nm nanoparticles in the nanocomposites. The loss tangent ranged from 0.02 to 0.04 at these frequencies. A combination of stable permeability of ∼2 at 1 GHz to 2 GHz and permittivity of ∼7 was achieved with nanocomposites having 5-nm nanoparticles. The magnetic nanomaterials described in this paper can overcome the limitations from domain-wall and eddy-current losses in microscale metal–polymer composites, leading to enhanced frequency stability. The paper also demonstrates integration of metal–polymer nanocomposites as thin-film build-up layers with two-metal-layer structures on organic substrates.
引用
收藏
页码:1097 / 1106
页数:9
相关论文
共 50 条
[21]   Nanocomposite Polymer Adhesives: A Critical Review [J].
Kenig, S. ;
Dodiuk, H. ;
Otorgust, G. ;
Gomid, S. .
REVIEWS OF ADHESION AND ADHESIVES, 2019, 7 (02) :93-167
[22]   Polymer nanocomposite membranes for DMFC application [J].
Karthikeyan, CS ;
Nunes, SP ;
Prado, LASA ;
Ponce, ML ;
Silva, H ;
Ruffmann, B ;
Schulte, K .
JOURNAL OF MEMBRANE SCIENCE, 2005, 254 (1-2) :139-146
[23]   Polymer-Based Dielectrics with High Energy Storage Density [J].
Chen, Qin ;
Shen, Yang ;
Zhang, Shihai ;
Zhang, Q. M. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 45, 2015, 45 :433-458
[24]   Iron-cobalt-silica aerogel nanocomposite materials [J].
Casula, MF ;
Corrias, A ;
Paschina, G .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2003, 26 (1-3) :667-670
[25]   Advanced polymer dielectrics for high temperature capacitive energy storage [J].
Zhou, Yao ;
Wang, Qing .
JOURNAL OF APPLIED PHYSICS, 2020, 127 (24)
[26]   Electrosynthesis and performances of cobalt-ceria nanocomposite biocoatings [J].
Benea, L. ;
Sorcaru, S. F. ;
Ponthiaux, P. ;
Wenger, F. .
ADVANCES IN APPLIED CERAMICS, 2012, 111 (03) :134-141
[27]   Iron-Cobalt-Silica Aerogel Nanocomposite Materials [J].
M.F. Casula ;
A. Corrias ;
G. Paschina .
Journal of Sol-Gel Science and Technology, 2003, 26 :667-670
[28]   Analysis of graphene based miniaturized terahertz patch antennas for single band and dual band operation [J].
Khan, Md Abdul Kaium ;
Shaem, Towqir Ahmed ;
Alim, Mohammad Abdul .
OPTIK, 2019, 194
[29]   Polymer nanocomposite development for electronic industry needs [J].
Koskinen, Jari ;
Karttunen, Mikko ;
Paajanen, Mika ;
Sarlin, Juha .
NANOCOMPOSITE MATERIALS, 2009, 151 :3-9
[30]   Orientation of platelets in multilayered nanocomposite polymer films [J].
Malwitz, MM ;
Lin-Gibson, S ;
Hobbie, EK ;
Butler, PD ;
Schmidt, G .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2003, 41 (24) :3237-3248