Multistability and Multiperiodicity for a Class of Cohen–Grossberg BAM Neural Networks with Discontinuous Activation Functions and Time Delays

被引:0
作者
Yanke Du
Rui Xu
机构
[1] Shijiazhuang Mechanical Engineering College,Institute of Applied Mathematics
来源
Neural Processing Letters | 2015年 / 42卷
关键词
Multistability; Multiperiodicity; Cohen–Grossberg BAM neural network; Exponential stability; Discontinuous activation function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a general class of Cohen–Grossberg bidirectional associative memory neural networks (CGBAMNNs) with time-varying delays, distributed delays and discontinuous activation functions is investigated. By partitioning the state space, employing analysis approach and Cauchy convergence principle, sufficient conditions are established for the existence and local exponential stability of multiple equilibrium points, which ensure that 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n$$\end{document}-dimensional CGBAMNNs with k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-level discontinuous activation functions can have kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^n$$\end{document} equilibrium points. As an extension of multistability, sufficient conditions are obtained to ensure the existence of kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^n$$\end{document} locally exponentially stable periodic orbits of the system when time-varying delays and external inputs are periodic. Finally, three examples are given to illustrate the feasibility and application of the obtained results.
引用
收藏
页码:417 / 435
页数:18
相关论文
共 88 条
  • [1] Tian J(2011)Improved delay-dependent stability criterion for neural networks with time-varying delay Appl Math Comput 217 10278-10288
  • [2] Zhong S(2010)LMI criteria on exponential stability of BAM neural networks with both time-varying delays and general activation functions Math Comput Simul 81 837-850
  • [3] Wang H(2011)Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms Commun Nonlinear Sci Numer Simul 16 1524-1532
  • [4] Song Q(2011)LMI conditions for stability of impulsive stochastic Cohen-Grossberg neural networks with mixed delays Commun Nonlinear Sci Numer Simulat 16 435-454
  • [5] Duan C(2011)Global exponential stability of neural networks with discrete and distributed delays and general activation functions on time scales Neurocomputing 74 3142-3150
  • [6] Zhang X(2011)On periodic solutions to a class of non-autonomously delayed reaction-diffusion neural networks Commun Nonlinear Sci Numer Simul 16 414-422
  • [7] Wu S(2010)Multiperiodicity analysis and numerical simulation of discrete-time transiently chaotic non-autonomous neural networks with time-varying delays Commun Nonlinear Sci Numer Simul 15 1348-1357
  • [8] Li K(2009)Multistability and new attraction basins of almost-periodic solutions of delayed neural networks IEEE Trans Neural Netw 20 1581-1593
  • [9] Fu X(2011)Multiple periodic solutions in impulsive hybrid neural networks with delays Appl Math Comput 217 4890-4899
  • [10] Li X(2011)Impulsive hybrid discrete-time Hopfield neural networks with delays and multistability analysis Neural Netw 24 370-377