Blow-up criterion and the global existence of strong/classical solutions to Navier–Stokes/Allen–Cahn system

被引:0
作者
Senming Chen
Changjiang Zhu
机构
[1] Shantou University,Department of Mathematics
[2] South China University of Technology,School of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2021年 / 72卷
关键词
Blow-up criterion; Strong/classical solutions; Navier–Stokes/Allen–Cahn system; 35D30; 35Q30; 76T10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new viscosity for a coupled compressible Navier–Stokes/Allen–Cahn system because it describes the motion of a gas in a flowing liquid. The viscosity depends on two different variables (the density and the unknown function in Allen–Cahn equations). We establish blow-up criterions for strong solutions to initial-boundary value problem. We also show that the strong solutions can be improved to classical solutions. Precisely, when the viscosity only depends on the density, we prove the global existence and uniqueness of the Navier–Stokes/Allen–Cahn equations.
引用
收藏
相关论文
共 87 条
[21]  
Ding S(2008)The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients Kinet. Relat. Models 1 313-330
[22]  
Wen H(2012)Strong solutions of the Navier–Stokes equations for a compressible fluid of Allen–Cahn type Arch. Ration. Mech. Anal. 206 489-514
[23]  
Zhu C(2008)Vanishing of vacuum states and blow-up phenomena of the compressible Navier–Stokes equations Commun. Math. Phys. 281 401-444
[24]  
Ding S(1998)Vacuum states for compressible flow Discrete Contin. Dyn. Syst. 1 1-32
[25]  
Li Y(2016)Blow-up criterion for an incompressible Navier–Stokes/Allen–Cahn system with different densities Discrete Contin. Dyn. Syst. Ser. B 21 1507-1523
[26]  
Luo W(2007)On the barotropic compressible Navier–Stokes equations Commun. Partial Differ. Equ. 32 431-452
[27]  
Fan J(2008)Global smooth solutions of the compressible Navier–Stokes equations with density-dependent viscosity J. Differ. Equ. 244 2041-2061
[28]  
Jiang S(1962)On the interior regularity of weak solutions of the Navier–Stokes equations Arch. Ration. Mech. Anal. 9 187-195
[29]  
Fang D(2011)A Beale–Kato–Majda blow-up criterion for the 3-D compressible Navier–Stokes equations J. Math. Pures Appl. 95 36-47
[30]  
Zhang T(2016)Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations Invent. Math. 206 935-974