Poisson structures on moduli spaces¶of parabolic bundles on surfaces

被引:0
作者
Francesco Bottacin
机构
[1] Dipartimento di Ingegneria,
[2] Università degli Studi di Bergamo,undefined
[3] Viale Marconi 5,undefined
[4] 24044 Dalmine (BG),undefined
[5] Italy. e-mail: bottacin@math.unipd.it,undefined
来源
manuscripta mathematica | 2000年 / 103卷
关键词
Modulus Space; Vector Bundle; Poisson Structure; Global Section; Hilbert Polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a smooth complex projective surface and D an effective divisor on X such that H0(X,ωX−1(−D)) ≠ 0. Let us denote by ?ℬ the moduli space of stable parabolic vector bundles on X with parabolic structure over the divisor D (with fixed weights and Hilbert polynomials). We prove that the moduli space ?ℬ is a non-singular quasi-projective variety naturally endowed with a family of holomorphic Poisson structures parametrized by the global sections of ωX−1(−D). This result is the natural generalization to the moduli spaces of parabolic vector bundles of the results obtained in [B2] for the moduli spaces of stable sheaves on a Poisson surface. We also give, in some special cases, a detailed description of the symplectic leaf foliation of the Poisson manifold ?ℬ.
引用
收藏
页码:31 / 46
页数:15
相关论文
empty
未找到相关数据