Optimal Predictive Impedance Control in the Presence of Uncertainty for a Lower Limb Rehabilitation Robot

被引:0
|
作者
Mohsen Jalaeian-F.
Mohammad Mehdi Fateh
Morteza Rahimiyan
机构
[1] Shahrood University of Technology,Department of Electrical and Robotic Engineering
来源
Journal of Systems Science and Complexity | 2020年 / 33卷
关键词
Impedance control; lower limb rehabilitation robots; model predictive compensator; optimal predictive impedance controller; optimization in the presence of uncertainty;
D O I
暂无
中图分类号
学科分类号
摘要
As an innovative concept, an optimal predictive impedance controller (OPIC) is introduced here to control a lower limb rehabilitation robot (LLRR) in the presence of uncertainty. The desired impedance law is considered to propose a conventional model-based impedance controller for the LLRR. However, external disturbances, model imperfection, and parameters uncertainties reduce the performance of the controller in practice. In order to cope with these uncertainties, an optimal predictive compensator is introduced as a solution for a proposed convex optimization problem, which is performed on a forward finite-length horizon. As a result, the LLRR has the desired behavior even in an uncertain environment. The performance and efficiency of the proposed controller are verified by the simulation results.
引用
收藏
页码:1310 / 1329
页数:19
相关论文
共 50 条
  • [1] Optimal Predictive Impedance Control in the Presence of Uncertainty for a Lower Limb Rehabilitation Robot
    Jalaeian-F, Mohsen
    Fateh, Mohammad Mehdi
    Rahimiyan, Morteza
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (05) : 1310 - 1329
  • [2] Internal Model Impedance Control for a Lower Limb Rehabilitation Robot in the Presence of Uncertainty
    Jalaeian-F, Mohsen
    Fateh, Mohammad Mehdi
    Rahimiyan, Morteza
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 930 - 935
  • [3] Impedance Control for a Lower-Limb Rehabilitation Robot
    Chen, Xin
    Chen, Weihai
    Wang, Jianhua
    Zhang, Jianbin
    PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 1212 - 1217
  • [4] sEMG-based impedance control for lower-limb rehabilitation robot
    Vahab Khoshdel
    Alireza Akbarzadeh
    Nadia Naghavi
    Ali Sharifnezhad
    Mahdi Souzanchi-Kashani
    Intelligent Service Robotics, 2018, 11 : 97 - 108
  • [5] sEMG-based impedance control for lower-limb rehabilitation robot
    Khoshdel, Vahab
    Akbarzadeh, Alireza
    Naghavi, Nadia
    Sharifnezhad, Ali
    Souzanchi-Kashani, Mahdi
    INTELLIGENT SERVICE ROBOTICS, 2018, 11 (01) : 97 - 108
  • [6] Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment
    Wang, Yuefei
    Liu, Zhen
    Feng, Zhiqiang
    CLINICAL BIOMECHANICS, 2022, 95
  • [7] Voltage-based adaptive impedance force control for a lower-limb rehabilitation robot
    Fateha, Mohammad Mehdi
    Khoshdel, Vahab
    ADVANCED ROBOTICS, 2015, 29 (15) : 961 - 971
  • [8] An impedance control method of lower limb exoskeleton rehabilitation robot based on predicted forward dynamics
    Wang, Yuefei
    Liu, Zhen
    Zhu, Liucun
    Li, Xiaoying
    Wang, Huaibin
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1515 - 1518
  • [9] Impedance Synovial Control for Lower Limb Rehabilitation Exoskeleton System
    Zhu, Xinyu
    Sun, Zhenxing
    Wang, Ting
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT I, 2022, 1700 : 366 - 373
  • [10] Neural learning impedance control of lower limb rehabilitation exoskeleton with flexible joints in the presence of input constraints
    Yang, Yong
    Huang, Deqing
    Jin, Chengwu
    Liu, Xia
    Li, Yanan
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (07) : 4191 - 4209