Remarks on Kähler Ricci Flow

被引:0
作者
Xiuxiong Chen
Bing Wang
机构
[1] University of Wisconsin–Madison,Department of Mathematics
[2] Princeton University,Department of Mathematics
来源
Journal of Geometric Analysis | 2010年 / 20卷
关键词
Ricci Soliton; Constant Scalar Curvature; Ricci Flow; Positive Scalar Curvature; Fano Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We show the convergence of Kähler Ricci flow directly if the α-invariant of the canonical class is greater than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{n}{n+1}$\end{document}. Applying these convergence theorems, we can give a Kähler Ricci flow proof of Calabi conjecture on such Fano manifolds. In particular, the existence of KE metrics on a lot of Fano surfaces can be proved by flow method. Note that this geometric conclusion (based on the same assumption) was established earlier via elliptic method by Tian (Invent. Math. 89(2):225–246, 1987; Invent. Math. 101(1):101–172, 1990; Invent. Math. 130:1–39, 1997). However, a new proof based on Kähler Ricci flow should be still interesting in its own right.
引用
收藏
页码:335 / 353
页数:18
相关论文
共 28 条
  • [1] Arezzo C.(2006)Symmetries, quotients and Kähler-Einstein metrics J. Reine Angew. Math. 591 177-200
  • [2] Ghigi A.(1985)Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds Invent. Math. 81 359-372
  • [3] Pirola G.P.(2007)On Kähler manifolds with positive orthogonal bisectional curvature Adv. Math. 215 427-445
  • [4] Cao H.(2002)Ricci flow on Kähler-Einstein surfaces Invent. Math. 147 487-544
  • [5] Chen X.(2006)Ricci flow on Kähler-Einstein manifolds Duke Math. J. 131 17-73
  • [6] Chen X.(1982)Remarks on the existence problem of positive Kähler-Einstein metrics Math. Ann. 282 463-471
  • [7] Tian G.(1992)Kähler-Einstein metrics and the generalized Futaki invariants Invent. Math. 110 315-335
  • [8] Chen X.(1983)An obstruction to the existence of Einstein Kähler metrics Invent. Math. 73 437-443
  • [9] Tian G.(1998)The complex Monge-Ampère equation Acta Math. 180 69-117
  • [10] Ding W.(1979)Projective manifolds with ample tangent bundles Ann. Math. 76 213-234