Hardy spaces on the Quaternions

被引:1
作者
Jiman Zhao
机构
[1] Beijing Normal University,Department of Mathematics
[2] MM Key Lab.,Academy of Mathematics and System Sciences
[3] Chinese Academy of Sciences,undefined
关键词
Quaternion algebra; Cauchy-Riemann operator; Hardy space;
D O I
10.1007/s00006-003-0007-8
中图分类号
学科分类号
摘要
In this paper, the Quaternion-valued Hardy spaces and conjugate Hardyspaces on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{3} $$\end{document} are characterized. In analogy with the decomposition of square-integrable function space on the real line \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}$$\end{document} into the direct sum of Hardy space and conjugate Hardy space, the square-integrable Quaternion -valued function space on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{3} $$\end{document} is decomposed into the orthogonal sum of the Quaternion Hardy and conjugate Hardy spaces.
引用
收藏
页码:47 / 55
页数:8
相关论文
empty
未找到相关数据