Well-being and obesity of rheumatoid arthritis patients

被引:1
作者
Longford N.T. [1 ]
Nicodemo C. [2 ,3 ]
Núñez M. [4 ]
Núñez E. [5 ]
机构
[1] SNTL, Departament d'Economia i Empresa, Universitat Pompeu Fabra, Barcelona 08005
[2] Universitat Autònoma de Barcelona, Barcelona
[3] IZA, Frankfurt am Main
[4] Hospital Clínic, Universitat de Barcelona, Barcelona
[5] Institut Català de la Salut, Barcelona
关键词
Body mass index; Multiple imputation; Potential outcomes; Propensity score matching; Rheumatoid arthritis;
D O I
10.1007/s10742-011-0070-x
中图分类号
学科分类号
摘要
We apply the potential outcomes framework in the analysis of an observational study of rheumatoid arthritis patients, in which we compare the mean functional-health and well-being scores (SF-36) of patients who are overweight and who are not. We combine propensity score matching with multiple imputation for nonresponse. We assess the sensitivity of the conclusions with respect to the details of the propensity model and the definition of being overweight. © 2011 Springer Science+Business Media, LLC.
引用
收藏
页码:27 / 43
页数:16
相关论文
共 19 条
[1]  
Angst F., Aeschlimann A., Stucki G., Smallest detectable and minimal clinically important differences of rehabilitation intervention with their implications for required sample sizes using WOMAC and SF-36 quality of life measurement instruments in patients with osteoarthritis of the lower extremities, Arthritis Care and Research, 45, 4, pp. 384-391, (2001)
[2]  
Hays R.D., Morales L.S., The RAND-36 measure of health-related quality of life, Annals of Medicine, 33, 5, pp. 350-357, (2001)
[3]  
Holland P.B., Statistics and causal inference, J. Am. Stat. Assoc., 81, pp. 945-970, (1986)
[4]  
Kurth T., Walker A.M., Glynn R.J., Chan K.A., Gaziano J.M., Berger K., Robins J.M., Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect, American Journal of Epidemiology, 163, 3, pp. 262-270, (2006)
[5]  
Little R.J.A., Rubin D.B., Statistical Analysis with Missing Data, (2002)
[6]  
Longford N.T., Missing Data and Small-Area Estimation. Modern Analytical Equipment for the Survey Statistician, (2005)
[7]  
Longford N.T., Studying Human Populations. An Advanced Course in Statistics, (2008)
[8]  
Nunez M., Nunez E., Sanchez A., Luisde Val J., Bonet M., Roig D., Munoz D., Patients' perceptions of health-related quality of life in rheumatoid arthritis, Clin. Rheumatol., 28, pp. 1157-1165, (2009)
[9]  
R: A Language and Environment for Statistical Computing, (2009)
[10]  
Rosenbaum P.R., Observational Studies, (2002)