Small-Time Asymptotics for Gaussian Self-Similar Stochastic Volatility Models

被引:0
作者
Archil Gulisashvili
Frederi Viens
Xin Zhang
机构
[1] Ohio University,Department of Mathematics
[2] Purdue University,Department of Statistics
[3] Purdue University,Department of Mathematics
来源
Applied Mathematics & Optimization | 2020年 / 82卷
关键词
Stochastic volatility models; Gaussian self-similar volatility; Implied volatility; Small-time asymptotics; Karhunen–Loève expansions; 60G15; 91G20; 40E05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the class of Gaussian self-similar stochastic volatility models, and characterize the small-time (near-maturity) asymptotic behavior of the corresponding asset price density, the call and put pricing functions, and the implied volatility. Away from the money, we express the asymptotics explicitly using the volatility process’ self-similarity parameter H, and its Karhunen–Loève characteristics. Several model-free estimators for H result. At the money, a separate study is required: the asymptotics for small time depend instead on the integrated variance’s moments of orders 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document} and 32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{3}{2}$$\end{document}, and the estimator for H sees an affine adjustment, while remaining model-free.
引用
收藏
页码:183 / 223
页数:40
相关论文
共 77 条
  • [1] Alòs E(2007)On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility Finance Stoch. 11 571-589
  • [2] Léon J(2011)An extension of bifractional Brownian motion Commun. Stoch. Anal. 5 333-340
  • [3] Vives J(2004)Computing the implied volatility in stochastic volatility models Comm. Pure Appl. Math. 57 1352-1373
  • [4] Bardina X(2007)Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems Electron. Commun. Probab. 12 161-172
  • [5] Es-Sebaiy Kh(2012)Stochastic volatility models with long-memory in discrete and continuous time Quant. Financ. 12 635-649
  • [6] Berestycki H(1998)Long memory in continuous-time stochastic volatility models Math. Financ. 8 291-323
  • [7] Busca J(2012)Affine fractional stochastic volatility models Ann. Financ. 8 337-378
  • [8] Florent I(2008)A Karhunen-Loève decomposition of a Gaussian process generated by independent pairs of exponential random variables J. Funct. Anal. 255 23263-2394
  • [9] Bojdecki T(2014)Marginal density expansions for diffusions and stochastic volatility I: Theoretical foundations Commun. Pure Appl. Math. 67 40-82
  • [10] Gorostiza LG(2014)Marginal density expansions for diffusions and stochastic volatility I: Applications Commun. Pure Appl. Math. 67 321-350