On Tightness and Weak Convergence in the Approximation of the Occupation Measure of Fractional Brownian Motion

被引:0
|
作者
Serge Cohen
Mario Wschebor
机构
[1] Université de Toulouse,Institut de Mathématiques de Toulouse
[2] Université Paul Sabatier,Centro de Matemática, Facultad de Ciencias
[3] Universidad de la República,undefined
来源
Journal of Theoretical Probability | 2010年 / 23卷
关键词
Occupation measure; Fractional Brownian motion; Limit theorem; 60F05; 60G15; 60G18;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider approximations of the occupation measure of the Fractional Brownian motion by means of some functionals defined on regularizations of the paths. In a previous article Berzin and León proved a cylindrical convergence to a Wiener process of conveniently rescaled functionals. Here we show the tightness of the approximation in the space of continuous functions endowed with the topology of uniform convergence on compact sets. This allows us to simplify the identification of the limit.
引用
收藏
页码:1204 / 1226
页数:22
相关论文
共 50 条
  • [1] On Tightness and Weak Convergence in the Approximation of the Occupation Measure of Fractional Brownian Motion
    Cohen, Serge
    Wschebor, Mario
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) : 1204 - 1226
  • [2] Weak convergence to fractional Brownian motion in Brownian scenery
    Wensheng Wang
    Probability Theory and Related Fields, 2003, 126 : 203 - 220
  • [3] Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients
    Suo, Yongqiang
    Yuan, Chenggui
    Zhang, Shao-Qin
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2021, 39 (02) : 278 - 305
  • [4] A Functional LIL and Some Weighted Occupation Measure Results for Fractional Brownian Motion
    J. Kuelbs
    W. V. Li
    Journal of Theoretical Probability, 2002, 15 : 1007 - 1030
  • [5] A functional LIL and some weighted occupation measure results for fractional Brownian motion
    Kuelbs, J
    Li, WV
    JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (04) : 1007 - 1030
  • [6] On the occupation measure of super-Brownian motion
    Le Gall, Jean-Francois
    Merle, Mathieu
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2006, 11 : 252 - 265
  • [7] Approximation of Fractional Brownian Motion by Martingales
    Shklyar, Sergiy
    Shevchenko, Georgiy
    Mishura, Yuliya
    Doroshenko, Vadym
    Banna, Oksana
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (03) : 539 - 560
  • [8] Approximation of Fractional Brownian Motion by Martingales
    Sergiy Shklyar
    Georgiy Shevchenko
    Yuliya Mishura
    Vadym Doroshenko
    Oksana Banna
    Methodology and Computing in Applied Probability, 2014, 16 : 539 - 560
  • [9] Weak convergence of integral functionals of random walks weakly convergent to fractional Brownian motion
    Mishura Yu.S.
    Rode S.H.
    Ukrainian Mathematical Journal, 2007, 59 (8) : 1155 - 1162
  • [10] A limit theorem for occupation times of fractional Brownian motion
    Kasahara, Y
    Kosugi, N
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 67 (02) : 161 - 175