Two-photon phase gate with linear optical elements and atom–cavity system

被引:1
作者
Yi-Hao Kang
Yan Xia
Pei-Min Lu
机构
[1] Fuzhou University,Department of Physics
来源
Quantum Information Processing | 2016年 / 15卷
关键词
Photon phase gate; Linear optical element; Atom–cavity system;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a protocol for implementing π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} phase gate of two photons with linear optical elements and an atom–cavity system. The evolution of the atom–cavity system is based on the quantum Zeno dynamics. The devices in the present protocol are simple and feasible with current experimental technology. Moreover, the method we proposed here is deterministic with a high fidelity. Numerical simulation shows that the evolution in cavity is efficient and robust. Therefore, the protocol may be helpful for quantum computation field.
引用
收藏
页码:4521 / 4535
页数:14
相关论文
共 203 条
  • [1] Gorbachev VN(2003)Can the states of the W-class be suitable for teleportation Phys. Lett. A 314 267-undefined
  • [2] Trubilko AI(1992)Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states Phys. Rev. Lett. 69 2881-undefined
  • [3] Rodichkina AA(2002)General scheme for superdense coding between multiparties Phys. Rev. A 65 022304-undefined
  • [4] Zhiliba AI(2005)Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs Phys. Rev. A 72 044301-undefined
  • [5] Bennett CH(2006)Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements Eur. Phys. J. D 39 459-undefined
  • [6] Wiesner SJ(1998)Quantum computers can search rapidly by using almost any transformation Phys. Rev. Lett. 80 4329-undefined
  • [7] Liu XS(1997)Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer SIAM J. Comput. 26 1484-undefined
  • [8] Long GL(2012)Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system Phys. Rev. Lett. 108 130501-undefined
  • [9] Tong DM(1995)Elementary gates for quantum computation Phys. Rev. A 52 3457-undefined
  • [10] Feng L(1995)Realizable universal quantum logic gates Phys. Rev. Lett. 74 4087-undefined