Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data

被引:147
作者
Eshaghi, Arman [1 ,2 ]
Young, Alexandra L. [2 ,3 ]
Wijeratne, Peter A. [2 ]
Prados, Ferran [1 ,2 ,4 ]
Arnold, Douglas L. [5 ]
Narayanan, Sridar [5 ]
Guttmann, Charles R. G. [6 ]
Barkhof, Frederik [1 ,2 ,7 ,8 ]
Alexander, Daniel C. [2 ]
Thompson, Alan J. [1 ]
Chard, Declan [1 ,9 ]
Ciccarelli, Olga [1 ,9 ]
机构
[1] UCL, UCL Queen Sq Inst Neurol, Fac Brain Sci, Queen Sq Multiple Sclerosis Ctr,Dept Neuroinflamm, London, England
[2] UCL, Dept Comp Sci, Ctr Med Image Comp CMIC, Fac Engn Sci, London, England
[3] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Neuroimaging, London, England
[4] Univ Oberta Catalunya, E Ctr Hlth, Barcelona, Spain
[5] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[6] Harvard Med Sch, Brigham & Womens Hosp, Ctr Neurol Imaging, Boston, MA 02115 USA
[7] Vrije Univ Amsterdam, Med Ctr, Amsterdam, Netherlands
[8] UCL, UCL Queen Sq Inst Neurol, Fac Brain Sci, Dept Brain Repair & Rehabil, London, England
[9] Univ Coll London Hosp, Biomed Res Ctr, Natl Inst Hlth Res, London, England
基金
欧盟地平线“2020”; 美国国家卫生研究院; 英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
DOUBLE-BLIND; MATTER DAMAGE; PHASE-III; PLACEBO; DISABILITY; MS; MULTICENTER; OCRELIZUMAB; PATHOLOGY; EFFICACY;
D O I
10.1038/s41467-021-22265-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials. Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis subtypes, progression, and response to potential therapeutic treatments based on neuroimaging data.
引用
收藏
页数:12
相关论文
共 45 条
[1]   ICD-11: a brave attempt at classifying a new world [J].
不详 .
LANCET, 2018, 391 (10139) :2476-2476
[2]   Longitudinal gray matter changes in multiple sclerosisuDifferential scanner and overall disease-related effects [J].
Bendfeldt, Kerstin ;
Hofstetter, Louis ;
Kuster, Pascal ;
Traud, Stefan ;
Mueller-Lenke, Nicole ;
Naegelin, Yvonne ;
Kappos, Ludwig ;
Gass, Achim ;
Nichols, Thomas E. ;
Barkhof, Frederik ;
Vrenken, Hugo ;
Roosendaal, Stefan D. ;
Geurts, Jeroen J. G. ;
Radue, Ernst-Wilhelm ;
Borgwardt, Stefan J. .
HUMAN BRAIN MAPPING, 2012, 33 (05) :1225-1245
[3]  
Bhattacharyya A, 1946, SANKHYA, V7, P401
[4]   White and gray matter damage in primary progressive MS The chicken or the egg? [J].
Bodini, Benedetta ;
Chard, Declan ;
Altmann, Daniel R. ;
Tozer, Daniel ;
Miller, David H. ;
Thompson, Alan J. ;
Wheeler-Kingshott, Claudia ;
Ciccarelli, Olga .
NEUROLOGY, 2016, 86 (02) :170-176
[5]   Exploring the origins of grey matter damage in multiple sclerosis [J].
Calabrese, Massimiliano ;
Magliozzi, Roberta ;
Ciccarelli, Olga ;
Geurts, Jeroen J. G. ;
Reynolds, Richard ;
Martin, Roland .
NATURE REVIEWS NEUROSCIENCE, 2015, 16 (03) :147-158
[6]   Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART): a phase 2b, multiarm, double-blind, randomised placebo-controlled trial [J].
Chataway, Jeremy ;
De Angelis, Floriana ;
Connick, Peter ;
Parker, Richard A. ;
Plantone, Domenico ;
Doshi, Anisha ;
John, Nevin ;
Stutters, Jonathan ;
MacManus, David ;
Carrasco, Ferran Prados ;
Barkhof, Frederik ;
Ourselin, Sebastien ;
Braisher, Marie ;
Ross, Moira ;
Cranswick, Gina ;
Pavitt, Sue H. ;
Giovannoni, Gavin ;
Wheeler-Kingshott, Claudia Angela Gandini ;
Hawkins, Clive ;
Sharrack, Basil ;
Bastow, Roger ;
Weir, Christopher J. ;
Stallard, Nigel ;
Chandran, Siddharthan ;
Williams, Thomas ;
Beyene, Tiggy ;
Bassan, Vanessa ;
Zapata, Alvin ;
Connick, Peter ;
Lyle, Dawn ;
Cameron, James ;
Mollison, Daisy ;
Colville, Shuna ;
Dhillon, Baljean ;
Walker, Allan ;
Smith, Lorraine ;
Gnanapavan, Sharmilee ;
Nicholas, Richard ;
Rashid, Waqar ;
Aram, Julia ;
Ford, Helen ;
Overell, James ;
Young, Carolyn ;
Duddy, Martin ;
Guadagno, Joe ;
Evangelou, Nikolaos ;
Craner, Matthew ;
Palace, Jacqueline ;
Hobart, Jeremy ;
Sharrack, Basil .
LANCET NEUROLOGY, 2020, 19 (03) :214-225
[7]   Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial [J].
Chataway, Jeremy ;
Schuerer, Nadine ;
Alsanousi, Ali ;
Chan, Dennis ;
MacManus, David ;
Hunter, Kelvin ;
Anderson, Val ;
Bangham, Charles R. M. ;
Clegg, Shona ;
Nielsen, Casper ;
Fox, Nick C. ;
Wilkie, David ;
Nicholas, Jennifer M. ;
Calder, Virginia L. ;
Greenwood, John ;
Frost, Chris ;
Nicholas, Richard .
LANCET, 2014, 383 (9936) :2213-2221
[8]  
Clyde V.Merlise, 2018, MERLISECLYDE BAS BAS, DOI [10.5281/zenodo.1475297, DOI 10.5281/ZENODO.1475297]
[9]   Natural history of multiple sclerosis: a unifying concept [J].
Confavreux, C ;
Vukusic, S .
BRAIN, 2006, 129 :606-616
[10]   Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis [J].
De Stefano, Nicola ;
Stromillo, Maria Laura ;
Giorgio, Antonio ;
Bartolozzi, Maria Letizia ;
Battaglini, Marco ;
Baldini, Mariella ;
Portaccio, Emilio ;
Amato, Maria Pia ;
Sormani, Maria Pia .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2016, 87 (01) :93-99