Isentropic “Shock Waves” in Numerical Simulations of Astrophysical Problems

被引:0
|
作者
G. S. Bisnovatyi-Kogan
S. G. Moiseenko
机构
[1] Russian Academy of Sciences,Space Research Institute
[2] National Research Nuclear University NIYaU MIFI,undefined
来源
Astrophysics | 2016年 / 59卷
关键词
shock waves; numerical methods; Mach number;
D O I
暂无
中图分类号
学科分类号
摘要
Strong discontinuities in solutions of the gas dynamic equations under isentropic conditions, i.e., with continuity of entropy at the discontinuity, are examined. Solutions for a standard shock wave with continuity of energy at the discontinuity are compared with those for an isentropic “shock wave.” It is shown that numerical simulation of astrophysical problems in which high-amplitude shock waves are encountered (supernova explosions, modelling of jets) with conservation of entropy, rather than of energy, leads to large errors in the shock calculations. The isentropic equations of gas dynamics can be used only when there are no strong discontinuities in the solution or when the intensity of the shocks is not high and they do not significantly affect the flow.
引用
收藏
页码:1 / 10
页数:9
相关论文
共 50 条
  • [31] Numerical Simulations and Astrophysical Applications of Laboratory Jets at Omega
    R. F. Coker
    B. H. Wilde
    J. M. Foster
    B. E. Blue
    P. A. Rosen
    R. J. R. Williams
    P. Hartigan
    A. Frank
    C. A. Back
    Astrophysics and Space Science, 2007, 307 : 57 - 62
  • [32] A review of direct numerical simulations of astrophysical detonations and their implications
    Parete-Koon, Suzanne T.
    Smith, Christopher R.
    Papatheodore, Thomas L.
    Messer, O. E. Bronson
    FRONTIERS OF PHYSICS, 2013, 8 (02) : 189 - 198
  • [33] The hydrodynamics of astrophysical jets: scaled experiments and numerical simulations
    Belan, M.
    Massaglia, S.
    Tordella, D.
    Mirzaei, M.
    de Ponte, S.
    ASTRONOMY & ASTROPHYSICS, 2013, 554
  • [34] Numerical simulations and astrophysical applications of laboratory jets at omega
    Coker, R. F.
    Wilde, B. H.
    Foster, J. M.
    Blue, B. E.
    Rosen, P. A.
    Williams, R. J. R.
    Hartigan, P.
    Frank, A.
    Back, C. A.
    ASTROPHYSICS AND SPACE SCIENCE, 2007, 307 (1-3) : 57 - 62
  • [35] Astrophysical Jet Simulations: Comparing Different Numerical Methods
    Andrea Mignone
    Silvano Massaglia
    Gianluigi Bodo
    Astrophysics and Space Science, 2004, 293 : 199 - 207
  • [36] Simulation of astrophysical flows in isentropic approximation
    Moiseenko, S. G.
    Bisnovatyi-Kogan, G. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2018, 27 (10):
  • [37] Astrophysical jets: Observations, numerical simulations, and laboratory experiments
    Bellan, P. M.
    Livio, M.
    Kato, Y.
    Lebedev, S. V.
    Ray, T. P.
    Ferrari, A.
    Hartigan, P.
    Frank, A.
    Foster, J. M.
    Nicolai, P.
    PHYSICS OF PLASMAS, 2009, 16 (04)
  • [38] A review of direct numerical simulations of astrophysical detonations and their implications
    Suzanne T. Parete-Koon
    Christopher R. Smith
    Thomas L. Papatheodore
    O. E. Bronson Messer
    Frontiers of Physics, 2013, 8 : 189 - 198
  • [39] Unidimensional SPH simulations of reactive shock tubes in an astrophysical perspective
    Busegnies, Y.
    Francois, J.
    Paulus, G.
    SHOCK WAVES, 2007, 16 (4-5) : 359 - 389
  • [40] Unidimensional SPH simulations of reactive shock tubes in an astrophysical perspective
    Y. Busegnies
    J. François
    G. Paulus
    Shock Waves, 2007, 16 : 359 - 389