Generalized Riccati Wick differential equation and applications

被引:0
作者
Marwa Missaoui
Hafedh Rguigui
Slaheddine Wannes
机构
[1] University of Sfax,Department of Mathematics, Faculty of Sciences of Sfax
[2] Umm Al-Qura University,Department of Mathematics, AL
[3] KSA,Qunfudhah University College
[4] University of Sousse,High School of Sciences and Technology of Hammam Sousse
[5] University of Gabes,Department of Mathematics, Faculty of Sciences of Gabes
来源
São Paulo Journal of Mathematical Sciences | 2020年 / 14卷
关键词
Wick product; Wick derivation; Generalized Riccati Wick differential equation; Space of entire functions with ; -exponential growth condition of minimal type;
D O I
暂无
中图分类号
学科分类号
摘要
Using the Wick derivation operator and the Wick product of elements in a distribution space Fθ∗(SC′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_\theta ^*({\mathcal {S}}'_{{\mathbb {C}}})$$\end{document}, we introduce the generalized Riccati Wick differential equation as a distribution analogue of the classical Riccati differential equation. The solution of this new equation is given. Finally, we finish this paper by building some applications.
引用
收藏
页码:580 / 595
页数:15
相关论文
共 30 条
[11]  
Rguigui H(2015)Quantum Ornstein–Uhlenbeck semigroups Quantum Stud. Math. Found. 2 159-89
[12]  
Gannoun R(2015)Quantum Chaos Solitons Fract. 73 80-48
[13]  
Hachaichi R(2016)-potentials associated to quantum Ornstein–Uhlenbeck semigroups Chaos Solitons Fract. 84 41-1500
[14]  
Ouerdiane H(2016)Characterization of the QWN-conservation operator Math. Slo. 66 1487-1656
[15]  
Rezgi A(2018)Wick differential and poisson equations associated to the QWN-Euler operator acting on generalized operators Complex Anal. Oper. Theory 12 1637-73
[16]  
Ji UC(1724)Characterization theorems for the quantum white noise gross Laplacian and applications Acta Eruditorum Lipsiae 8 67-undefined
[17]  
Obata N(undefined)Animadversationes in aequationes differentiales secundi gradus undefined undefined undefined-undefined
[18]  
Mak MK(undefined)undefined undefined undefined undefined-undefined
[19]  
Harko T(undefined)undefined undefined undefined undefined-undefined
[20]  
Mortici C(undefined)undefined undefined undefined undefined-undefined